1.3. Linear Operators

Note. In this section we define one of the most fundamental objects of functional analysis: The linear operator. The rest of this course is devoted to studying properties of and classifying linear operators on linear spaces.

Definition. If X and Z are two linear spaces over the same scalar field, a *linear* operator from X to Z is a rule T that associates with each $x \in X$ a unique element $Tx \in Z$ such that for all $x, y \in X$ and $\alpha \in \mathbb{F}$ we have T(x+y) = T(x) + T(y) and $T(\alpha x) = \alpha T(x)$. Linear operators are also referred to as *linear transformations* or *linear mappings*.

Note. We can combine the two above properties and define T as linear if

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

for all $x, y \in X$ and for all $\alpha, \beta \in \mathbb{F}$.

Note. In linear algebra, you see that a linear operator from \mathbb{R}^n to \mathbb{R}^m is equivalent to an $m \times n$ matrix (recall that the elements of \mathbb{R}^n are *n*-tuples of real numbers). See my online Linear Algebra (MATH 2010) notes on Section 3.4. Linear Transformations (see "Theorem 3.10. Matrix Representations of Linear Transformations"). **Definition.** The null space (or kernel) of linear operator $T : X \to Z$, denoted N(T), is the set of all $x \in X$ such that T(x) = 0. The range of T (also called the image of X under T), denoted R(T), is the set of all $z \in Z$ such that Tx = z for some $x \in X$.

Definition. A linear operator $T: X \to Z$ is surjective (or onto) if R(T) = Z. T is injective (or one-to-one) if Tx = Ty implies x = y.

Note. In Linear Algebra (MATH 2010) we show that a linear transformation T between vector spaces is injective (one-to-one) if and only if the kernel of T consists only of the 0 vector (see "Corollary 3.4.A. One-to-One and Kernel" in Section 3.4. Linear Transformations). We present the same result here in our notation.

Theorem 1.3.A. Linear operator $T: X \to Z$ is injective if and only if N(T) = 0.

Note. With $T: X \to Z$ a linear operator, we can consider the equation Tx = zwhere $x \in X$ and $z \in Z$. A solution $x \in X$ exists for all $z \in Z$ if and only if R(T) = Z. Now if a solution $x \in X$ exists for each $z \in Z$, then it is unique if and only if N(T) = 0 since Tx = Ty if and only if $x - y \in N(T)$.

Definition. If N(T) = 0, then we define $T^{-1} : R(T) \to X$ as $T^{-1}z = x$ where Tx = z.

Theorem 1.3.B. Let $T: X \to Z$ be linear with N(T) = 0. Then $T^{-1}: R(T) \to X$ is linear.

Note. Let X and Z be linear spaces. If T_1 and T_2 are linear transformations from X to Z, then for scalars $\alpha, \beta \in \mathbb{F}$ we can define the transformation $\alpha T_1 + \beta T_2 : X \to Z$ as $(\alpha T_1 + \beta T_2)(x) = \alpha T_1(x) + \beta T_2(x)$. Then since for $\gamma, \delta \in \mathbb{F}$ and $x, y \in X$ we have:

$$(\alpha T_1 + \beta T_2)(\gamma x_1 + \delta x_2) = \alpha T_1(\gamma x_1 + \delta x_2) + \beta T_2(\gamma x_1 + \delta x_2)$$

by definition of $\alpha T_1 + \beta T_2$
$$= \alpha (T_1(\gamma x_1) + T_1(\delta x_2)) + \beta (T_2(\gamma x_1) + T_2(\delta x_2))$$

since T_1 and T_2 are linear
$$= \alpha T_1(\gamma x_1) + \alpha T_1(\delta x_2) + \beta T_2(\gamma x_1) + \beta T_2(\delta x_2)$$

by distribution of scalar multiplication
over vector addition
$$= \alpha \gamma T_1(x_1) + \alpha \delta T_1(x_2) + \beta \gamma T_2(x_1) + \beta \delta T_2(x_2)$$

since T_1 and T_2 are linear
$$= \gamma (\alpha T_1(x_1) + \beta T_2(x_1)) + \delta (\alpha T_1(x_2) + \beta T_2(x_2))$$

by distribution of scalar multiplication
over vector addition
$$= \gamma (\alpha T_1 + \beta T_2)(x_1) + \delta (\alpha T_1 + \beta T_2)(x_2)$$

by definition of $\alpha T_1 + \beta T_2$.

So we can create a linear space out of the linear operators from X to Z.

Definition. For linear spaces X and Z, the linear space of all linear operators from X to Z is denoted $\mathcal{L}(X, Z)$. If X = Z, we denote this as $\mathcal{L}(X)$.

Note. If $X = \mathbb{R}^n$ and $Z = \mathbb{R}^m$, then $\mathcal{L}(X, Z)$ is the set of all $m \times n$ matrices. We show this in Linear Algebra (MATH 2010); see "Corollary 2.3.A. Standard Matrix Representation of Linear Transformations" in Section 2.3. Linear Transformations of Euclidean Spaces.

Revised: 5/6/2021