Chapter 2. Normed Linear Spaces: The Basics

2.1. Metric Spaces

Note. A metric is simply a way to measure distance. If we can measure distance, then we can reproduce many of the properties of \mathbb{R} : open/closed sets, limits, continuity, boundedness, connectedness, and compactness. These ideas are covered in Complex Analysis 1 (MATH 5510) (see my online notes on Chapter II. Metric Spaces and the Topology of \mathbb{C}) and possibly in the Real Analysis sequence (MATH 5210-5220) (see my online notes on II. Abstract Spaces: General Properties).

Definition. Let X be a set and $d: X \times X \to \mathbb{R}^+ \cup \{0\}$ such that for all $x, y, z \in X$:

- (i) $d(x,y) \le d(x,z) + d(z,y)$ (Triangle Inequality).
- (ii) d(x,y) = d(y,x) (Symmetry).

(iii) d(x, y) = 0 if and only if x = y.

The function d is a *metric* and the pair (X, d) is a *metric space*.

Example. With $X = \mathbb{R}$ and d(x, y) = |x - y|, we have the usual metric space (\mathbb{R}, d) where we do senior level analysis. More generally, with $X = \mathbb{R}^n$ and

$$d((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n)) = \sqrt{\sum_{k=1}^n |x_k - y_k|^2}$$

is also a metric space.

Definition. For set $A \subset X$ in metric space (X, d) and point $x \in X$, define the distance from x to A as $d(x, A) = \inf\{d(x, a) \mid a \in A\}$.

Note. We can have d(x, A) = 0, yet have $x \notin A$. Consider, for example, $x = \{0\}$ and $A = (0, 1) \subset \mathbb{R}$.

Definition. A sequence $\{x_n\}$ in a metric space (X, d) converges to a point $x \in X$ if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $d(x, x_n) < \varepsilon$. x is the *limit* of the sequence and we write $x = \lim x_n$ or $x_n \to x$.

Definition. Let (X_1, d_1) and (X_2, d_2) be metric spaces. A function $f : X_1 \to X_2$ is *continuous* at point $p \in X_1$ if for all $\varepsilon > 0$ there is $\delta > 0$ such that $d_1(p,q) < \delta$ implies that $d_2(f(p), f(q)) < \varepsilon$.

Theorem 2.1.A. A function $f : X_1 \to X_2$ is continuous at point $p \in X_1$ if and only if for each sequence $\{x_n\} \subset X_1$ with $x_n \to p$, we have $\lim f(x_n) = f(p)$.

Note. The proof of Theorem 2.1.A is to be given in Exercise 2.1.

Definition. Let (X, d) be a metric space and $A \subset X$. The *diameter* of A is

$$\operatorname{diam}(A) = \sup\{d(x, y) \mid x, y \in A\}.$$

Set A is bounded if diam $(A) < \infty$.

Note. Notice the similarity in the definition of diameter of a set and diameter of a graph; see my online notes for Graph Theory 1 (MATH 5340) on Section 3.1. Walks and Connection.

Revised: 5/9/2021