2.10. Direct Products and Sums

Note. In this section we briefly introduce two ways to create new normed linear spaces from old ones.

Definition. Let S be a set (called an indexing set) and for each $s \in S$ suppose X_s is a linear space. Consider the set of all functions on S such that $f(s) \in X_s$ for all $s \in S$. (Notice $f : S \to \bigcup_{s \in S} X_s$. Also, since X_s is a linear space, we can take linear combinations of such f's.) The set, itself a linear space, is the product of the spaces, denoted $\prod_{s \in S} X_s$.

Example. If $S = \{1, 2\}$ then the product is the usual $X_1 \times X_2$.

Definition. If X_s is a normed linear space for all $s \in S$, then for $f \in \prod_{s \in S} X_s$ define $\|f\| = \sup\{\|f\| \mid s \in S\}$.

Claim. $\| \cdot \|$ defined on $\prod_{s \in S} X_s$ above is a norm (the “sup norm”) on $X = \{f \in \prod_{s \in S} \mid \|f\| < \infty\}$. This normed linear space is the direct product of the normed linear spaces X_s where $s \in S$. If each X_s is a Banach space, then the direct product is a Banach space.
Definition. The natural projection \(\pi_s \) on \(S \) is defined as \(\pi_s(f) = f(s) \) for each \(s \in S \).

Definition. The subspace of \(\prod_{s \in S} X_s \) which consists of all functions that take a value of zero, except for finitely many values of \(s \) is the direct sum of \(X_s \) for \(s \in S \).

Note. Direct sums of normed linear spaces \(X_s \)'s admit more norms than direct products (as the text claims on page 52). If set \(S \) is finite, then the direct product and direct sum are the same.

Revised: 5/13/2013