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2.2. Norms

Note. We now introduce a norm on a linear space, use it to induce a metric, and

use the metric to address some topological ideas.

Definition. A norm on a linear space X is a mapping ‖ · ‖ : X → [0,∞) such that

for all x, y ∈ X and for all α ∈ F:

(i) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (Triangle Inequality).

(ii) ‖αx‖ = |α|‖x‖ (Scalar Property).

(iii) ‖x‖ = 0 implies that x = 0.

The pair (X, ‖ · ‖) is a normed linear space.

Note. The Scalar Property refers to “|α|” and so this requires that field F itself

has a norm on it. We take F to be either R or C, so |α| means the absolute value

of α (or sometimes “modulus” if α ∈ C).

Note. A norm ‖ · ‖ on a linear space induces a metric d as d(x, y) = ‖x− y‖.
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Examples 2.1 and 2.2. On normed linear spaces Rn and Cn, we can define the

familiar Euclidean norm for x = (x1, x2, . . . , xn) as

‖x‖2 =

{
n∑

k=1

(xk)
2

}1/2

on Rn,

‖x‖2 =

{
n∑

k=1

xkxk

}1/2

on Cn.

Another norm (called the “`1 norm”) on Rn and Cn is

‖x‖1 =
n∑

k=1

|xk|.

It is easy to see that both of these norms satisfy properties (ii) and (iii) of the

definition of norm. It is easy to see that the `1 norm satisfies the Triangle Inequality

(since absolute value and modulus satisfy the Triangle Inequality on R and C).

However, it is more of a chore to see that the Euclidean norm satisfies the Triangle

Inequality. This is commonly shown in a Linear Algebra class using the Schwarz

Inequality; see my online Linear Algebra notes on Section 1.2. The Norm and Dot

Product (see Theorems 1.4 and 1.5).

Note. We can use the Triangle Inequality to establish the Backwards Triangle

Inequality:

|‖x‖ − ‖y‖| ≤ ‖x− y‖.

Notice ‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖ and so ‖x‖ − ‖y‖ ≤ ‖x− y‖. Similarly,

‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖x− y‖, and the claim follows.

https://faculty.etsu.edu/gardnerr/2010/c1s2.pdf
https://faculty.etsu.edu/gardnerr/2010/c1s2.pdf
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Theorem 2.3. Continuity of Operations.

Suppose that (xn) and (yn) are sequences in a normed linear space, and (αn) is a

sequence in F, and that x = lim(xn), y = lim(yn), and α = lim(αn). Then

(a) lim(xn + yn) = lim(xn) + lim(yn) = x + y.

(b) lim(αnxn) = lim(αn) lim(xn) = αx.

(c) lim ‖xn‖ = ‖x‖.

Note. The following property is not at all surprising. The surprising thing is that

there are certain settings (non-Hausdorff topological spaces) where the result is

not true. See my online notes for Analysis 1 (MATH 4217/5217) on Section 3.1.

Topology of the Real Numbers (see Bonus 1).

Proposition 2.4. Uniqueness of Limits.

If a sequence (xn) in a normed linear space converges to both x and y, then x = y.

Note. Now that we have a metric defined on linear spaces, we can explore topo-

logical properties of linear spaces (open sets, closed sets, compact sets, continuity,

etc.).

https://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
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Definition. For a normed linear space, define the open r-ball centered at x as

B(x; r) = {y ∈ X | ‖x− y‖ < r}

and the closed r-ball centered at x as

B(x; r) = {y ∈ X | ‖x− y‖ ≤ r}.

In both cases, r is the radius of the ball and we require r > 0.

Definition. Given any set A ⊆ X and x ∈ X, x is

(i) an interior point of A if B(x; r) ⊆ A for some r > 0;

(ii) an exterior point of A if it is an interior point of Ac = {x ∈ X | x /∈ A};

(iii) a boundary point of A if it is neither interior nor exterior, so any open ball

around boundary point x contains both points in A and points in Ac;

(iv) a limit point of A if for all r > 0 the ball B(x; r) contains a point of A distinct

from x.

The set of all boundary points of A is denoted ∂(A).

Note. Now for some very explicitly topological definitions, from which MUCH will

follow.

Definition. A set A in a normed linear space is open if all points of A are interior

points of A. A set A in a normed linear space is closed if it contains all of its

boundary points.
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Note 2.2.A. If A is open then it contains none of its boundary points. Notice

that, by definition, a boundary point of A is also a boundary point of Ac. So for

open A, Ac is closed. Therefore complements of open sets are closed (this is, often

the definition of “closed set”). Vacuously, the empty set ∅ is both open and closed.

Trivially, set X in normed linear space (X, ‖ · ‖) is both open and closed.

Note 2.2.B. As shown in Analysis 1 (MATH 4217/5217), in R an arbitrary union

of open sets is open and a finite intersection of open sets is open. Similarly (by

DeMorgan’s Laws), an arbitrary intersection of closed sets is closed and a finite

union of closed sets is closed. See Theorem 3.3 of my online Analysis 1 notes on

Section 3.1. Topology of the Real Numbers. The same properties hold in normed

linear spaces. We can also show that a set is closed if and only if it contains all of

its limit points (see Corollary 3.6(a) of Section 3.1. Topology of the Real Numbers).

Note. The following definition could be stated in terms of ε’s, but the text takes

a different route. The following is equivalent to the standard ε/δ definition of

continuity in Calculus 1.

Definition. Let f : X → Y where (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are linear spaces.

Then f is continuous at point x ∈ X if, given any open ball B′ around f(x), there

is an open ball B around x such that f(B) ⊆ B′.

Definition. Function f : X → Y , where (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are normed

linear spaces, is continuous if it is continuous at each point x ∈ X.

https://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
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Note 2.2.C. As in senior level analysis, f : X → Y is continuous if for all open

V ⊆ Y , the inverse image f−1(V ) is open in X. See Theorem 4.5 of my online

notes for Analysis 1 (MATH 4217/5217) on Section 4.1. Limits and Continuity.

Note. The book gives its first ε definition in the following (though it could have

done it earlier, since we have a metric in normed linear spaces).

Definition. The function f : X → Y where (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are normed

linear spaces, is uniformly continuous, if for all ε > 0 there is a δ > 0 (depending

on ε) such that for all x ∈ X we have f(B(x; δ)) ⊆ B(f(x); ε).

Note. Of course, if we choose a single x0 ∈ X, we see that if f is uniformly

continuous on X, then f is continuous at x0 (that is, uniform continuity implies

pointwise continuity). However, for f : R+ → R+ we know that f(x) = 1/x is

pointwise continuous, but not uniformly continuous (see Example 1 in my online

notes for Complex Analysis 1 [MATH 5510] on A Primer on Lipschitz Functions).

Definition. For A ⊂ X ((X, ‖ · ‖) a normed linear space), the closure of A is the

intersection of all closed sets containing A, denoted A.

Theorem 2.2.A. For A ⊂ X we have

(i) A equals the union of A and its boundary points.

(ii) A = {x ∈ X | for all r > 0, B(x; r) ∩ A 6= ∅}.

(iii) A = {x ∈ X | there is a sequence (an) in A with (an) → x}.

(iv) A = {x ∈ X | d(x, A) = 0}.

The proof is to be given in Exercise 2.5.

https://faculty.etsu.edu/gardnerr/4217/notes/4-1.pdf
https://faculty.etsu.edu/gardnerr/5510/CSPACE.pdf
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Note. We now justify what seems obvious (given our suggestive verbiage and

notation).

Proposition 2.5. With the notation above,

(i) B(x; r) is open where r > 0.

(ii) The closure of B(x; r) is B(x; r).

Definition. In a normed linear space X, set Y ⊆ X is dense in X if Y = X.

Note. In the normed linear space X = Rn, the set Y = Qn is dense in X.

Note. By Theorem 2.2.A(iii), if Y is dense in X, then for all x ∈ X there exists

a sequence (yn) ⊆ Y such that (yn) → x. This means that if f is continuous on

X, then the values of f on X can be determined by the values of f on Y , since

f(x) = lim f(yn). This will be useful later, especially when Y is a countable dense

subset of X (see Subsection 2.9.7, “`p Spaces”).

Note. The text comments (page 17): “One of the most important concepts of

analysis is that of compactness.” You are familiar with this in the setting of R

from your Analysis 1 (MATH 4217/5217) experience (see my online notes for this

class on Section 3.1. Topology of the Real Numbers). However, there are certain

properties of compact sets in R (namely, the Heine-Borel Theorem) which do not

necessarily hold in more general settings, such as normed linear spaces.

https://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf
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Definition. A set K, a subset of a normed linear space, is compact if either of the

following two equivalent properties hold:

(i) Given any collection of open sets with union containing K, there is a finite

subcollection of these sets with union containing K. The collection of open

sets is called an open cover of K.

(ii) For any sequence (xn) ⊆ K, there is a subsequence (xnk
) which converges to a

point in K. Sometimes (Royden and Fitzpatrick, Section 9.5. Compact Metric

Spaces) this is called sequentially compact.

Note. The equivalence of (i) and (ii) above is established in the metric space

setting in Theorem 9.16 of Royden and Fitzpatrick’s Real Analysis (4th Edition,

Boston: Prentice Hall, 2010).

Theorem 2.2.B. The Compact Set Theorem.

If K ⊆ X, X a normed linear space, is compact then K is closed and bounded.

Note. The Heine-Borel Theorem states that a set of real numbers is compact if

and only if it is closed and bounded. In fact, the result holds as well in Rn. How-

ever, there are settings where Heine-Borel does not hold. By Theorem 2.2.B, we

know that compact sets are always closed and bounded. In the infinite dimen-

sional Hilbert space `2, there is a closed and bounded set that is not compact. To

paraphrase, we can say that the Heine-Borel Theorem holds in finite dimensional

spaces.
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