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2.4. Bounded Linear Operators

Note. In this section, we consider operators. Operators are mappings from one

normed linear space to another. We define a norm for an operator. In Chapter 6

we will form a linear space out of the operators (called a dual space).

Definition. For normed linear spaces X and Y , the set of all linear operators from

X to Y is denoted L(X, Y ). For T ∈ L(X, Y ) define the operator norm

‖T‖ = sup{‖Tx‖ | x ∈ X, ‖x‖ = 1}.

If ‖T‖ < ∞, then T is bounded. Denote the set of all bounded operators in L(X, Y )

as B(X, Y ).

Note 2.4.A. For any nonzero x ∈ X, we have that x/‖x‖ is a unit vector. So by

the definition of ‖T‖ we have

‖T‖ = sup{‖Tx‖ | x ∈ X, ‖x‖ = 1} ≥ ‖T (x/‖x‖)‖ = ‖T (x)‖/‖x‖.

So for all x ∈ X, ‖Tx‖ ≤ ‖T‖‖x‖. We will often use this inequality when discussing

operator norms.

Note. Since we use norms to measure lengths, we can use the operator norm to

see if the operator preserves lengths.
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Definition. A linear operator T ∈ L(X, Y ) is an isometry if ‖Tx‖ = ‖x‖ for all

x ∈ X.

Note. Since X and Y are normed, for T ∈ L(X, Y ) we can define continuity for

T in terms of epsilons and deltas.

Definition. For T ∈ L(X, Y ), T is continuous at x0 ∈ X if for all ε > 0 there exists

δ > 0 such that if ‖x0 − x‖ < δ then ‖T (x0) − T (x)‖ < ε (that is, T (B(x0; δ)) ⊆

B(T (x0); ε)). T is uniformly continuous on X (or a subset of X) if for all ε > 0

there exists δ > 0 such that ‖x1 − x2‖ < δ implies ‖T (x1) − T (x2)‖ < ε for all

x1, x2 ∈ X (or in the subset of X).

Theorem 2.6. Given T ∈ L(X, Y ), the following are equivalent:

(i) T is uniformly continuous on X;

(ii) T is continuous at some point x ∈ X;

(iii) T is bounded.

Example 2.7. Consider the set of bounded functions on set S, B(S), with the sup

norm. For g ∈ B(S) define the linear operator Mg : B(S) → B(S) as Mg(f(s)) =

g(s)f(s). Mg is a multiplication operator. We claim that ‖Mg‖ = ‖g‖.

Let f ∈ B(S) with ‖f‖ = 1. Then

|Mg(f)(s)| = |g(s)f(s)| = |g(s)||f(s)| (for all s ∈ S) ≤ ‖g‖‖f‖ = ‖g‖.
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Take a supremum over all s ∈ S to get ‖Mg(f)‖ ≤ ‖g‖. Take a supremum over all

such ‖f‖ = 1, to get ‖Mg‖ ≤ ‖g‖. Also, for all s ∈ S, we consider the characteristic

function

χs(x) =

 1 if x = s

0 if x 6= s

(the text denotes this as δs) and we have by Note 2.4.A

|g(s)| = |(Mgχs)(s)| ≤ ‖Mg‖‖χs‖ = ‖Mg‖(1) = ‖Mg‖.

Therefore, sup
s∈S

|g(s)| = ‖g‖ ≤ ‖Mg‖, and ‖Mg‖ = ‖g‖ follows.

Definition. If T ∈ L(X, Y ) and S ∈ L(Y, Z) are bounded linear operators, then

the composition of S and T is defined as ST : X → Z where (S ◦T )(x) = ST (x) =

S(T (x)).

Note. Compositions of continuous functions are continuous, so for S and T con-

tinuous, S ◦ T is continuous. So, by Theorem 2.6, for bounded S and T , we have

that S ◦ T = ST is bounded. The following result gives a specific bound on ‖ST‖

in terms of ‖S‖ and ‖T‖.

Proposition 2.8. For T ∈ L(X, Y ) and S ∈ L(Y, Z) bounded linear operators,

S ◦ T = ST is linear and ‖ST‖ ≤ ‖S‖‖T‖.
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