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2.5. Completeness

Note. Recall that the Axiom of Completeness for the real numbers (an ordered

field) is: Every set of real numbers with an upper bound has a least upper bound.

See my online notes on Analysis 1 (MATH 4217/5217) on Section 1.3. The Com-

pleteness Axiom. Of course, this explicitly uses the ordering of R (in that it refers

to “upper” and “least”). The idea of completeness in any space is that there are

“no holes” in the space. However, a formal mathematical definition is required. In

the absence of an ordering (such as in C for which there is no ordering), however,

we need another approach to completeness. Recall, in R, that a sequence is Cauchy

if and only if it is convergent (see Exercises 2.3.13 and 2.3.14 in my online notes for

Analysis 1 on Section 2.3. Bolzano-Weierstrass Theorem). In R, this is equivalent

to the Axiom of Completeness (that is, we can assume that Cauchy sequences con-

verge and then show that sets with upper bounds have least upper bounds. . . by

the way, the Triangle Inequality implies that convergent sequences are Cauchy, as

we’ll show below).

Definition. A sequence (xn) in a normed linear space is Cauchy if given ε > 0,

there is a N ∈ N such that for all m, n ≥ N we have ‖xm − xn‖ < ε.

Definition. A normed linear space is complete if every Cauchy sequence converges.

A complete normed linear space is called a Banach space.

https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf
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Proposition 2.9. In a normed linear space:

(a) A convergent sequence is Cauchy.

(b) A Cauchy sequence (xn) is bounded. That is, there is a k > 0 such that

‖xn‖ < k for all n.

(c) All subsequences of a Cauchy sequence are Cauchy.

(d) If (xn) is Cauchy and some subsequence converges to x, then (xn) converges

to x.

Note. The above result still does not allow us to test a sequence for Cauchy-

ness, but instead gives us properties of Cauchy sequences. The following definition

will, as shown in Proposition 2.10, give us a technique for testing a sequence for

Cauchy-ness, beyond the definition.

Definition. A sequence (xn) is a fast Cauchy sequence if ‖xn+1 − xn‖ ≤ 1/2n for

n ∈ N.

Note. The sequence {1/2n} used in the definition of “fast Cauchy sequence” could

be replaced with any positive term sequence {an} convergent to 0. In Royden’s

Real Analysis book, a sequence (xn) is said to be rapidly Cauchy if there is a series

of positive numbers
∞∑

n=1

εn < ∞ for which ‖xn+1 − xn‖ ≤ ε2
n for all n ∈ N. See my

online notes for Real Anlaysis 1 (MATH 5210) on Section 7.3. Lp is Complete: The

Riesz-Fischer Theorem for details. However, we follow the book’s definition.

http://faculty.etsu.edu/gardnerr/5210/notes/7-3.pdf
http://faculty.etsu.edu/gardnerr/5210/notes/7-3.pdf
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Proposition 2.10. In a normed linear space:

(a) A fast Cauchy sequence is Cauchy.

(b) Any Cauchy sequence contains a fast Cauchy subsequence.

Note. By Proposition 2.9(d) and Proposition 2.10(b), it follows that a normed

linear space is complete if all fast Cauchy sequences converge.

Definition. In normed linear space X, the series
∞∑
i=1

xi is said to converge to

x, denoted
∞∑
i=1

xi = x, if the sequence of partial sums (sn), where sn =
n∑

i=1

xi,

converges to x.

Proposition 2.11. If x =
∞∑
i=1

xi exists, then ‖x‖ ≤
∞∑
i=1

‖xi‖.

Definition. The series
∞∑
i=1

xi is absolutely convergent if the series
∞∑
i=1

‖xi‖ con-

verges.

Note. The following result gives another way to establish completeness.

Theorem 2.12. A normed linear space X is complete if and only if every absolutely

convergent series is convergent.
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Note. The following result will be useful in establishing the convergence of a

Cauchy sequence.

Lemma 2.13. Suppose that X is a subspace of the space of all functions from set

S to field F, F (S), and that ‖ ·‖ is a norm on X for which the closed unit ball B(1)

is closed under pointwise limits. That is, if Cauchy sequence (fn) ⊂ B(1) converges

pointwise to f , then f ∈ X and f ∈ B(1). If a sequence (fn) in X is Cauchy and

converges pointwise to f , then f ∈ X and (fn) converges to f with respect to ‖ · ‖.

Note. The following two “theorems” are actually just examples of complete

normed linear spaces.

Theorem 2.14. The space of all bounded functions from set S to field F (taken

to be R or C), B(S), is complete with respect to the sup norm.

Theorem 2.15. Let X and Y be normed linear spaces and suppose that Y is

complete. Then the space of all bounded linear operators from X to Y , B(X, Y ),

is complete.

Idea of Proof. Similar to the proof of Theorem 2.14 where pointwise convergence

and the completeness of Y is used to find a candidate limit of a Cauchy sequence.

Theorem 2.16. A subspace Y of a Banach space X is itself a Banach space if and

only if Y is closed.
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Example 2.17. Consider [a, b]. By Theorem 2.14 B[a, b] (the linear space of all

bounded functions on [a, b]) is a Banach space. Consider C[a, b], the linear space

of all continuous functions on [a, b]. A sequence (fn) ⊂ C[a, b] that is convergent

with respect to the sup norm is, in fact, uniformly convergent by Note 2.3.A. So

the limit of (fn) is itself a continuous function (see Theorem 8.2 in my online notes

for Analysis 1 [MATH 4217/5217] on Section 8.1. Sequences of Functions) and so

C[a, b] is closed. So by Theorem 2.16, C[a, b] is a Banach space under the sup norm.

Note. The book calls the following an “extension theorem.” It involves extending

a bounded linear operator from a dense set X0 in X to all of X.

Theorem 2.20. Extension Theorem.

Suppose that X0 is a dense subspace of the normed linear space X such that

T0 ∈ B(X0, Z) (i.e., T0 is a bounded linear operator from X0 to Z), where Z is

a Banach space. Then T0 has a unique extension to an operator T ∈ B(X, Z).

Moreover, ‖T‖ = ‖T0‖, and if T0 is an isometry, then so is T .

Note. Similar to the extension of a bounded linear operator from dense subset to

the whole space, we can start with a normed linear space and “complete” it in the

sense of having the given space as a dense subspace of some complete space.

Definition. Given any normed linear space X, a completion of X consists of a

Banach space X̃ and an isometry J : X → X̃ such that J(X) is dense in X̃.

https://faculty.etsu.edu/gardnerr/4217/notes/8-1.pdf
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Example. R is a completion of Q where J(x) = x for all x ∈ Q.

Theorem 2.22. Completion Theorem.

For any normed linear space, a completion exists. Moreover, the completion is

unique in the following sense: If (X̃1, J1) and (X̃2, J2) are completions of X, there

is a surjective (onto) isometry U : X̃1 → X̃2 such that UJ1 = J2.

Note. In fact, Theorem 2.22 holds in the more general setting of metric spaces.

See my online notes for Introduction to Topology (MATH 4357/5357) on Section

7.43. Complete Metric Spaces; see Theorem 43.7. We rely on this result to establish

the existence part of Theorem 2.22.
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