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2.9. Lp Spaces

Note. In this section, we introduce the spaces Lp and `p for 1 ≤ p ≤ ∞. We’ll see

that these spaces are Banach space. To completely appreciate the development of

these ideas, we need an understanding of Lebesgue measure, Lebesgue integration,

and convergence properties of Lebesgue integrals. This material is covered in Real

Analysis 1 (MATH 5210), but since that class is not a prerequisite for this class, we

list (without proof) some of the major results concerning Lebesgue measure and

integration. For a presentation of Lebesgue measure and integration, see my online

notes for Real Analysis 1. Many notes from this class are referenced in this section.

Definition. Given a set Ω, a collection S of subsets of Ω is a σ-algebra if:

(a) Given any finite or countable infinite sequence A1, A2, . . . of sets in S, we have

(i) their union is in S

(ii) their intersection is in S.

(b) For any A ∈ S, the complement Ac ∈ S.

(c) Ω ∈ S.

Note. By DeMorgan’s Law, property (a)(i) and (b) combine to give property

(a)(ii) (and similarly, (a)(ii) and (b) combine to give (a)(i)).

Example. The power set P(S) is a σ-algebra on S.

https://faculty.etsu.edu/gardnerr/5210/notes1.htm
https://faculty.etsu.edu/gardnerr/5210/notes1.htm
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Example. A more interesting example of a σ-algebra on R is the “smallest”

σ-algebra containing all open sets of real numbers, B, which is called the set of

Borel sets. However, there are not many Borel sets and in terms of cardinality

|R| = |B| < |P(R)|. See Section 1.4. Open Sets, Closed Sets, and Borel Sets or Real

Numbers and Supplement. The Cardinality of the Set of Lebesgue Measurable Sets.

Definition. A measure µ on a σ-algebra S is a function from S to [0,∞] which is

countable additive (that is, for A1, A2, . . . disjoint sets in S we have µ(∪·∞k=1Ai) =∑∞
k=1 µ(Ak)) and satisfies µ(∅) = 0. The triple (Ω, S, µ) is a measure space if S is

a σ-algebra of subsets of Ω and µ is a measure on S. A function f : Ω → R is a

measurable function if for all r ∈ R, f−1((−∞, r]) ∈ S.

Note. We omit a huge number of details about Lebesgue measure. Suffice it to

say that Lebesgue measure m is defined on a σ-algebra of sets of real numbers,

denoted M (the σ-algebra of Lebesgue measurable sets), for which every interval

is in M (and so M contains all open and closed subsets of R) and the Lebesgue

measure of an interval is its length (see, in particular, Section 2.3. The σ-Algebra of

Lebesgue Measurable Sets). In terms of cardinality, |M| = |P(R)| but M 6= P(R)

(see Supplement. The Cardinality of the Set of Lebesgue Measurable Sets). The

Axiom of Choice can be used to “construct” a non-Lebesgue measurable set (Section

2.6. Nonmeasurable Sets (Roydens 3rd Edition) and Section 2.6. Nonmeasurable

Sets (Royden and Fitzpatrick, 4th Edition)). The construction is related to the

“intuitively offensive” Banach-Tarski paradox. See my notes on Nonmeasurable

sets and the Banach-Tarski Paradox.

https://faculty.etsu.edu/gardnerr/5210/notes/1-4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/1-4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/Cardinality-of-M.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/Cardinality-of-M.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-6.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-6.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-6-ed4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/2-6-ed4.pdf
https://faculty.etsu.edu/gardnerr/5210/banach-tarski.pdf
https://faculty.etsu.edu/gardnerr/5210/banach-tarski.pdf
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Definition. A measure space (Ω, S, µ) is finite if µ(Ω) < ∞.

Definition. A simple function on a measure space (Ω, S, µ) is a measurable func-

tion which takes on only a finite numbers of values. If s is simple and takes on the

values c1, c2, . . . , cn then the integral of s over Ω is∫
Ω

s dµ =
n∑

k=1

ck µ[s−1(ck)].

(See Section 4.2. Lebesgue Integration of a Bounded Measurable Function over a

Set of Finite Measure.)

Example. Consider the (modified) Dirichlet function on [0, 1]

D(x) =

 1 if x ∈ [0, 1] ∩ (R \Q)

0 if x ∈ [0, 1] ∩Q.

Then
∫

[0,1] D dm = 1 (one can show that a countable set has Lebesgue measure 0).

This example also illustrates the use of measure theory in probability. It allows

us to claim that the probability that a number chosen at random under a uniform

probability distribution between 0 and 1 is rational is 0.

Definition. Let f be a nonnegative real-valued measurable function. Define the

Lebesgue integral ∫
Ω

f dm = sup

{∫
Ω

s dm

∣∣∣∣ s is simple, s ≤ f

}
.

(See Section 4.2. Lebesgue Integration of a Bounded Measurable Function over a

Set of Finite Measure.)

https://faculty.etsu.edu/gardnerr/5210/notes/4-2.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-2.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-2.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-2.pdf
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Definition. A set B ∈ S such that µ(B) = 0 is a null set. A property which holds

on all of Ω except on a null set is said to hold almost everywhere, denoted a.e.

Theorem 2.9.A. If f and g are nonnegative measurable functions on Ω then:

(1)
∫

Ω(f + g) =
∫

Ω f +
∫

Ω g (Additivity),

(2) for any α ≥ 0,
∫

Ω αf = α
∫

Ω f (Scalar Property),

(3) If f ≤ g a.e. then
∫

Ω f ≤
∫

Ω g (Monotonicity),

(4)
∫

Ω f = 0 if and only if f = 0 a.e.

(5) If
∫

Ω f < ∞ then f < ∞ a.e.

Theorem 2.9.B. Fatou’s Lemma.

If (fn) is a sequence of nonnegative measurable functions which converge pointwise

a.e. to a function f , then f is measurable and∫
Ω

f ≤ lim inf

∫
Ω

fn.

(See Section 4.3. Integrals of Measurable Nonnegative Function.)

Theorem 2.9.C. Monotone Convergence Theorem.

If (fn) is a sequence of measurable functions converging pointwise a.e. to a function

f and if fn ≤ fn+1 a.e. for all n ∈ N, then∫
Ω

f =

∫
Ω

lim fn = lim

∫
Ω

fn.

(See Section 4.3. Integrals of Measurable Nonnegative Function.)

https://faculty.etsu.edu/gardnerr/5210/notes/4-3.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-3.pdf
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Definition. For a general real-valued measurable function f , define the positive

and negative parts as

f+(t) = max{f(t), 0} and f−(t) = −min{f(t), 0}.

(Notice that f+(t) and f−(t) are both nonnegative.) If
∫

Ω f+ < ∞ and
∫

Ω f− < ∞

then define the integral of f as
∫

Ω f =
∫

Ω f+−
∫

Ω f−. (See Section 4.4. The General

Lebesgue Integral.)

Definition. For complex valued measurable f(x), define the real and imaginary

part of f(x) as

Ref(x) = Re(f(x)) and Imf(x) = Im(f(x)).

If
∫

Ω Re(f) < ∞ and
∫

Ω Im(f) < ∞, then define the integral∫
Ω

f =

∫
Ω

Re(f) + i

∫
Ω

Im(f).

Theorem 2.9.D. If f and g are general measurable functions on Ω then:

(1)
∫

Ω(f + g) =
∫

Ω f +
∫

Ω g (Additivity),

(2) For any α ∈ F,
∫

Ω αf = α
∫

Ω f (Scalar Property),

(3) If f and g are real valued and f ≤ g a.e. then
∫

Ω f ≤
∫

Ω g (Monotonicity).

https://faculty.etsu.edu/gardnerr/5210/notes/4-4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/4-4.pdf
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Note. The next several results are introduced in Analysis 2 (MATH 5220) in

“Chapter 7. The Lp Spaces: Completeness and Approximation” (see my online

notes for Part 1 of Royden and Fitzpatrick’s book). They are covered in more depth

in the measure space setting in “Chapter 19. General Lp Spaces: Completeness,

Duality, and Weak Convergence” (see my online notes for Part 3 of Royden and

Fitzpatrick’s book).

Definition. Let (Ω, S, µ) be a measure space. For p ∈ [1,∞), define

‖f‖p =

(∫
Ω
|f |p dµ

)1/p

.

Let

Lp(Ω, S, µ) = {f : Ω → F | f is measurable, ‖f‖p < ∞}.

Then Lp(Ω, S, µ) is the Lp-space on Ω.

Proposition 2.35. Lp(Ω, S, µ) is a linear space.

Theorem 2.37. Hölder’s Inequality.

For all measurable functions f and g with f ∈ Lp and g ∈ Lq, where 1/p+1/q = 1,

we have that fg ∈ L1 and ‖fg‖1 ≤ ‖f‖p‖g‖q.

Theorem 2.38. Minkowski’s Inequality.

For all measurable functions f and g with f, g ∈ Lp where p ∈ [1,∞), we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

https://faculty.etsu.edu/gardnerr/5210/notes1.htm
https://faculty.etsu.edu/gardnerr/5210/notes3.htm
https://faculty.etsu.edu/gardnerr/5210/notes3.htm
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Definition. For 1 ≤ p < ∞, let N = {f ∈ Lp | ‖f‖p = 0}. Let Lp(Ω, S, µ) denote

the quotient space Lp/N . This is the Lp space on Ω.

Note. A alternate way to develop the Lp spaces is to partition Lp into equivalence

classes where two functions are in the same equivalence class if they are equal a.e.

Note. We have seen that ‖ · ‖p is a norm on Lp and we will see that Lp is complete

(that is, the Lp spaces are Banach spaces).

Definition. The essential supremum of f on a measure space is

‖f‖ess sup = inf{r | |f(x)| ≤ r a.e. on Ω}.

A measurable function is essentially bounded if ‖f‖ess sup < ∞. Let L∞ denote

the set of all essentially bounded functions on Ω. Define L∞ = L∞/N where N is

the subspace of all functions f on Ω where ‖f‖ess sup = 0.

Note. L∞ is a normed linear space under the essential supremum. So for f ∈ L∞

we denote ‖f‖ess sup as ‖f‖∞.

Theorem 2.41. The Riesz-Fischer Theorem.

For 1 ≤ p ≤ ∞, Lp is a complete normed linear space with norm ‖ · ‖p. That is, Lp

is a Banach space.
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Note. The next results concern the “little ` p space” and are covered in Analysis

2 (MATH 5220) in “Chapter 7. The Lp Spaces: Completeness and Approxima-

tion” (see my online notes for Part 1 of Royden and Fitzpatrick’s book), mostly in

homework exercises.

Definition. Define the set `p for p ∈ [1,∞) as

`p =

{
(x1, x2, . . .)

∣∣∣∣∣xk ∈ F,
∞∑

k=1

|xk|p < ∞

}
.

Define the `p norm

‖(x1, x2, . . .)‖p =

( ∞∑
k=1

|xk|p
)1/p

.

Define the set `∞ as the set of all bounded sequences of elements of F and define

the `∞ norm of a bounded sequence as the least upper bound of the set of absolute

values of the terms of the sequence.

Note. The `p spaces are complete normed linear spaces for p ∈ [1,∞]. That is,

they are Banach spaces.

Definition. A normed linear space is said to be separable if it contains a countable

dense subset.

Proposition 2.42. `∞ is not separable.

Theorem 2.9.E. `p is separable for p ∈ [1,∞).

https://faculty.etsu.edu/gardnerr/5210/notes1.htm
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Idea of Proof. The set of all sequences consisting of a finite number of rational

real numbers (or rational complex numbers if F = C) with the remaining entries

equal to 0 forms a countable dense set in `p.
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