3.3. Open Mappings

3.3. Open Mappings

Note. This section gives a proof of the Open Mapping Theorem which states that an onto bounded linear operator maps open sets to open sets.

Lemma 3.4. Given normed linear spaces X and Y, subsets A and C of X, $\alpha \in \mathbb{F}$, and $T \in \mathcal{L}(X,Y)$, we have:

- (a) $\alpha B(0;r) = \alpha B(r) = B(|\alpha|r) = B(0; |\alpha|r).$
- **(b)** $\alpha \overline{A} = \overline{\alpha} \overline{A}$.
- (c) $\overline{A} + \overline{C} \subseteq \overline{A + C}$.
- (d) $T(\alpha A) = \alpha T(A)$.

Note. The proof of Lemma 3.4 is left as Exercise 3.1.

Theorem 3.5. Open Mapping Theorem.

Given a surjective (onto) $T \in \mathcal{B}(X,Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Revised: 5/20/2015