Chapter 4. Hilbert Spaces

4.1. Introduction

Note. A Banach space is a complete normed linear space. A Hilbert space is a complete inner product space. Examples of linear spaces are \mathbb{R}^n and \mathbb{C}^n. The Euclidean norm on these spaces is $\|(x_1, x_2, \ldots)\| = \sqrt{\sum_{k=1}^{n} |x_k|^2}$. An “inner product” is like the dot product on \mathbb{R}^n: $x \cdot y = \sum_{k=1}^{n} x_k y_k$. Recall that dot products are used to measure angles between vectors and, in particular, used to determine when vectors are orthogonal. Notice that the dot product on \mathbb{R}^n induces the Euclidean norm on \mathbb{R}^n as $\|x\| = \sqrt{x \cdot x}$. We have that all Hilbert spaces are examples of Banach spaces. Hilbert spaces have most of the geometric properties of \mathbb{R}^n.

Note. In this chapter, we assume that the field of scalars is \mathbb{C}.

Revised: 7/1/2017