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4.2. Semi-Inner Products

Note. In this section, we define inner products and establish some results that

have very geometric interpretations.

Definition. A semi-inner product on a complex linear space X is a mapping from

X × X to C, denoted 〈x, y〉 for (x, y) ∈ X × X, where for all x, y, z ∈ X and for

all α ∈ C we have:

(a) Linearity in the first variable:

〈x + y, z〉 = 〈x, z〉+ 〈y, z〉

〈αx, z〉 = α〈x, z〉.

(b) Conjugate symmetry: 〈y, x〉 = 〈x, y〉.

(c) Positivity: 〈x, x〉 ≥ 0 (implying that 〈x, x〉 ∈ R).

If, in addition, 〈x, x〉 = 0 implies x = 0, then 〈·, ·〉 is an inner product. A linear

space with a (semi) inner product is a (semi) inner product space.

Note. Property (a) can be summarized as

〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉.

This combines with (b) to give “conjugate linearity” in the second variable:

〈z, αx + βy〉 = α〈z, x〉+ β〈z, y〉.
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Definition. For 〈·, ·〉 a semi-inner product, define the (induced) semi-norm ‖x‖ =√
〈x, x〉.

Note. We easily have

‖αx‖ =
√
〈αx, αx〉 =

√
αα〈x, x〉 = |α|‖x‖.

Also, if 〈·, ·〉 is an inner product, then ‖x‖ = 0 if and only if x = 0. A “semi-norm”

‖ · ‖ satisfies all the properties of a norm except the property “‖x‖ = 0 implies

x = 0.” That is, there may be nonzero vectors with semi-norm 0. See Exercise

2.6 for some properties of semi-norms. In the rest of this section, if we refer to a

semi-inner product space then it is understood that the symbols “‖ · ‖” represent

the semi-norm induced by the semi-inner product.

Example. For X = Cn, an inner product is

〈(x1, x2, . . . , xn), (y1, y2, . . . , yn)〉 =
n∑

k=1

xkyk.

Not surprisingly, for f, g ∈ L2, an inner product on L2 is given by 〈f, g〉 =
∫

Ω fg,

as we will see.

Lemma 4.2. Basic Identity.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-

inner product satisfies: for all x, y ∈ X, we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x, y〉.
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Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x, y ∈ X we have |〈x, y〉| ≤ ‖x‖‖y‖. If

〈·, ·〉 is an inner product, then equality holds if and only if x is a scalar multiple of

y (that is, x and y are linearly dependent).

Note. As you’ve seen before, the Cauchy-Schwartz Inequality is used to prove the

Triangle Inequality.

Theorem 4.4. Triangle Inequality.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-

inner product satisfies: for all x, y ∈ X, we have ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Note. With the Triangle Inequality established, we see that if 〈·, ·〉 is a (semi)

inner product, then ‖ · ‖ is a (semi) norm.

Note. We have seen many normed linear spaces. In the case of Rn, Cn, L2, and

`2, the (standard Euclidean) norms are “induced” by an inner product. However,

these are special cases. The following result can be used to show that, among the

Lp spaces, only for p = 2 is the norm induced by an inner product.
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Proposition 4.5. Parallelogram Law.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-

inner product satisfies: for all x, y ∈ X, we have

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Note. The reason this is called the Parallelogram law is that, in a parallelogram,

the sum of the squares of the diagonals equals the sum of the squares of the lengths

of the four edges:

Notice that the contrapositive of the Parallelogram law can be read as: “If the

semi-norm in a normed linear space does not satisfy the Parallelogram Law, then

the semi-norm is not induced by a semi-inner product.” This can be used to show

that the `p spaces are not inner product spaces for 1 ≤ p < 2 and 2 < p ≤ ∞. See

Exercise 4.2.

Note. We know that if 〈·, ·〉 is an inner product, then ‖x‖ =
√
〈x, x〉 is a norm.

The following result gives the inner product in terms of the norm induced by it.
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Proposition 4.7. Polarization Identity.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-

inner product satisfies: for all x, y ∈ X, we have

〈x, y〉 =
1

4

(
‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2) .

Note. The following result tells us when a norm is induced by an inner product.

Theorem 4.8. If ‖ · ‖ is a norm on a (complex) linear space X satisfying the

parallelogram law, then the norm is induced by an inner product.

Proof. Homework. See the text for hints.

Theorem 4.9. Continuity of Inner Product.

In any semi-inner product space, if the sequences (xn) → x and (yn) → y, then

(〈xn, yn〉) → 〈x, y〉.

Definition. A Hilbert space is a complete inner product space.
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