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4.3. Nearest Points and Convexity

Note. As the title suggests, this section is about (in a Hilbert space) finding the
closest point in a set to a given point. Recall that the distance from a point x to a
set Y in a normed linear space is d(x,Y) = inf{||lz — y|| | ¥ € Y}, so we would not

in general expect there to be a “nearest point.”

Definition. A set K in a linear space is convez if for all x,y € K and any scalar

a € [0,1], we have az + (1 — a)y € K.

Note. Geometrically, a set K is convex when x,y € K implies that all points
on a line connecting x and y are in K. By induction, if x1,x9,...,2, € K and

a1, Qg, ..., 0 €10,1] and ag + ag + - - - + a,, = 1, then the point ) _; apay € K.

Note. We are interested in conditions under which the “nearest point” is unique.
Consider the point P = (2,0) and the set {z | ||z| < 1} in R? under the sup norm.
The set is convex, but any point in the closed unit ball with first coordinate equal
to 1 is a point a distance 1 from P. So there is not a unique nearest point. The

real problem is that the boundary of the set is “flat.”
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Definition. A normed linear space X is strictly convex if for any two distinct unit

vectors x and y, we have ||(z +v)/2|| < 1.

Note. This definition implies that if z and y are boundary points on the unit
ball, then the midpoint of x and y is not a boundary point. That is, the boundary

contains no line segments. The boundary is, as the text says, “round.”

Proposition 4.10. Suppose X is strictly convex. For any point x and convex set

K, there is at most one point in K that is nearest to x.

Definition. A normed linear space is uniformly convez if for all ¢ > 0, there is

§ > 0 such that for 2,y € B(1) = B(0;1) we have

> 1 — 6 implies ||z — y|| < e.
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Lemma 4.3.A. If a normed linear space is uniformly convex, then it is strictly

convex.

Example 4.11. Any Hilbert space is uniformly convex! Let z,y € B(1) and
z = (z +y)/2. By the Parallelogram Law (Proposition 4.5),

lz = ylI* = 2002 * + yl*) = lle + yl* < 4= @lIz])* = 4(1 — [12]").

So if € € (0,2) then let 6 = 1 — /1 — 2/4, in which case (1 — §)* =1 —&?/4 and
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so ||3(z+y)|| = []z]| > 1— ¢ implies
1 2 g
|5 n| =P > a-op=1-7,

or
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2 < (1= 6)* = — - 1,

or 4(1—||z]|*) < €%. This implies that |z —y||* < 4(1—||2]|?) < &%, or ||lz—y|| < . If

~~

e > 2, then any 0 > 0 works to show uniform convexity since ||z —y|| < ||z||+]y| <

2<e.

Note. The text states that the L spaces with 1 < p < oo are uniformly convex
spaces. The text references A Short Course on Banach Spaces by N.L. Carothers,
Cambridge University Press (2005). For p > 2, this is an exercise (pages 87 and
88) in Reed and Simon’s Functional Analysis I, Academic Press (1980).

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any point x

and a nonempty closed convex set K, there is a nearest point to x in K.

Note. A subspace of a Banach space is a convex set. Next, we let M be a closed
subspace of a Hilbert space and define projections of x onto M as the point in M
nearest to x. This projection idea will lead us into the Gram-Schmidt process and

a discussion of orthonormal bases.

Definition. For M a closed subspace of a Hilbert space, define the projection of

x onto M as the point in M nearest to x, denoted Py(x).

Revised: 7/2/2021



