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4.3. Nearest Points and Convexity

Note. As the title suggests, this section is about (in a Hilbert space) finding the

closest point in a set to a given point. Recall that the distance from a point x to a

set Y in a normed linear space is d(x, Y ) = inf{‖x− y‖ | y ∈ Y }, so we would not

in general expect there to be a “nearest point.”

Definition. A set K in a linear space is convex if for all x, y ∈ K and any scalar

α ∈ [0, 1], we have αx + (1− α)y ∈ K.

Note. Geometrically, a set K is convex when x, y ∈ K implies that all points

on a line connecting x and y are in K. By induction, if x1, x2, . . . , xn ∈ K and

α1, α2, . . . , αn ∈ [0, 1] and α1 + α2 + · · ·+ αn = 1, then the point
∑n

k=1 αkxk ∈ K.

Note. We are interested in conditions under which the “nearest point” is unique.

Consider the point P = (2, 0) and the set {x | ‖x‖ ≤ 1} in R2 under the sup norm.

The set is convex, but any point in the closed unit ball with first coordinate equal

to 1 is a point a distance 1 from P . So there is not a unique nearest point. The

real problem is that the boundary of the set is “flat.”
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Definition. A normed linear space X is strictly convex if for any two distinct unit

vectors x and y, we have ‖(x + y)/2‖ < 1.

Note. This definition implies that if x and y are boundary points on the unit

ball, then the midpoint of x and y is not a boundary point. That is, the boundary

contains no line segments. The boundary is, as the text says, “round.”

Proposition 4.10. Suppose X is strictly convex. For any point x and convex set

K, there is at most one point in K that is nearest to x.

Definition. A normed linear space is uniformly convex if for all ε > 0, there is

δ > 0 such that for x, y ∈ B(1) = B(0; 1) we have∥∥∥∥1

2
(x + y)

∥∥∥∥ > 1− δ implies ‖x− y‖ < ε.

Lemma 4.3.A. If a normed linear space is uniformly convex, then it is strictly

convex.

Example 4.11. Any Hilbert space is uniformly convex! Let x, y ∈ B(1) and

z = (x + y)/2. By the Parallelogram Law (Proposition 4.5),

‖x− y‖2 = 2(‖x‖2 + ‖y‖2)− ‖x + y‖2 ≤ 4− (2‖z‖)2 = 4(1− ‖z‖2).

So if ε ∈ (0, 2) then let δ = 1−
√

1− ε2/4, in which case (1− δ)2 = 1− ε2/4 and
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so
∥∥1

2(x + y)
∥∥ = ‖z‖ > 1− δ implies∥∥∥∥1

2
(x + y)

∥∥∥∥2

= ‖z‖2 > (1− δ)2 = 1− ε2

4
,

or

−‖z‖2 < −(1− δ)2 =
ε2

4
− 1,

or 4(1−‖z‖2) < ε2. This implies that ‖x−y‖2 ≤ 4(1−‖z‖2) < ε2, or ‖x−y‖ < ε. If

ε ≥ 2, then any δ > 0 works to show uniform convexity since ‖x−y‖ ≤ ‖x‖+‖y‖ ≤

2 ≤ ε.

Note. The text states that the Lp spaces with 1 < p < ∞ are uniformly convex

spaces. The text references A Short Course on Banach Spaces by N.L. Carothers,

Cambridge University Press (2005). For p ≥ 2, this is an exercise (pages 87 and

88) in Reed and Simon’s Functional Analysis I, Academic Press (1980).

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any point x

and a nonempty closed convex set K, there is a nearest point to x in K.

Note. A subspace of a Banach space is a convex set. Next, we let M be a closed

subspace of a Hilbert space and define projections of x onto M as the point in M

nearest to x. This projection idea will lead us into the Gram-Schmidt process and

a discussion of orthonormal bases.

Definition. For M a closed subspace of a Hilbert space, define the projection of

x onto M as the point in M nearest to x, denoted PM(x).
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