4.3. Nearest Points and Convexity

Note. As the title suggests, this section is about (in a Hilbert space) finding the closest point in a set to a given point. Recall that the distance from a point x to a set Y in a normed linear space is $d(x,Y) = \inf\{||x-y|| \mid y \in Y\}$, so we would not in general expect there to be a "nearest point."

Definition. A set K in a linear space is *convex* if for all $x, y \in K$ and any scalar $\alpha \in [0, 1]$, we have $\alpha x + (1 - \alpha)y \in K$.

Note. Geometrically, a set K is convex when $x, y \in K$ implies that all points on a line connecting x and y are in K. By induction, if $x_1, x_2, \ldots, x_n \in K$ and $\alpha_1, \alpha_2, \ldots, \alpha_n \in [0, 1]$ and $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$, then the point $\sum_{k=1}^n \alpha_k x_k \in K$.

Note. We are interested in conditions under which the "nearest point" is unique. Consider the point P = (2,0) and the set $\{x \mid ||x|| \leq 1\}$ in \mathbb{R}^2 under the sup norm. The set is convex, but any point in the closed unit ball with first coordinate equal to 1 is a point a distance 1 from P. So there is not a unique nearest point. The real problem is that the boundary of the set is "flat."

Definition. A normed linear space X is *strictly convex* if for any two distinct unit vectors x and y, we have ||(x+y)/2|| < 1.

Note. This definition implies that if x and y are boundary points on the unit ball, then the midpoint of x and y is not a boundary point. That is, the boundary contains no line segments. The boundary is, as the text says, "round."

Proposition 4.10. Suppose X is strictly convex. For any point x and convex set K, there is at most one point in K that is nearest to x.

Definition. A normed linear space is uniformly convex if for all $\varepsilon > 0$, there is $\delta > 0$ such that for $x, y \in \overline{B}(1) = \overline{B}(0; 1)$ we have

$$\left\| \frac{1}{2}(x+y) \right\| > 1 - \delta \text{ implies } \|x-y\| < \varepsilon.$$

Lemma 4.3.A. If a normed linear space is uniformly convex, then it is strictly convex.

Example 4.11. Any Hilbert space is uniformly convex! Let $x, y \in \overline{B}(1)$ and z = (x + y)/2. By the Parallelogram Law (Proposition 4.5),

$$||x - y||^2 = 2(||x||^2 + ||y||^2) - ||x + y||^2 \le 4 - (2||z||)^2 = 4(1 - ||z||^2).$$

So if $\varepsilon \in (0,2)$ then let $\delta = 1 - \sqrt{1 - \varepsilon^2/4}$, in which case $(1 - \delta)^2 = 1 - \varepsilon^2/4$ and

so $\|\frac{1}{2}(x+y)\| = \|z\| > 1 - \delta$ implies

$$\left\| \frac{1}{2}(x+y) \right\|^2 = \|z\|^2 > (1-\delta)^2 = 1 - \frac{\varepsilon^2}{4},$$

or

$$-\|z\|^2 < -(1-\delta)^2 = \frac{\varepsilon^2}{4} - 1,$$

or $4(1-\|z\|^2)<\varepsilon^2$. This implies that $\|x-y\|^2\leq 4(1-\|z\|^2)<\varepsilon^2$, or $\|x-y\|<\varepsilon$. If $\varepsilon\geq 2$, then any $\delta>0$ works to show uniform convexity since $\|x-y\|\leq \|x\|+\|y\|\leq 2\leq \varepsilon$.

Note. The text states that the L^p spaces with $1 are uniformly convex spaces. The text references A Short Course on Banach Spaces by N.L. Carothers, Cambridge University Press (2005). For <math>p \ge 2$, this is an exercise (pages 87 and 88) in Reed and Simon's Functional Analysis I, Academic Press (1980).

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any point x and a nonempty closed convex set K, there is a nearest point to x in K.

Note. A subspace of a Banach space is a convex set. Next, we let M be a closed subspace of a Hilbert space and define projections of x onto M as the point in M nearest to x. This projection idea will lead us into the Gram-Schmidt process and a discussion of orthonormal bases.

Definition. For M a closed subspace of a Hilbert space, define the projection of x onto M as the point in M nearest to x, denoted $P_M(x)$.

Revised: 7/2/2021