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4.4. Orthogonality

Note. This section is awesome! It is very geometric and shows that much of the

geometry of Rn holds in Hilbert spaces.

Definition. Elements x and y of a Hilbert space H are orthogonal if 〈x, y〉 = 0,

denoted x ⊥ y. For any subset S of a Hilbert space, denote

S⊥ = {x ∈ H | 〈x, s〉 = 0 for all s ∈ S}.

S⊥ is called the perp set of set S.

Proposition 4.13. Suppose S is a subset of a Hilbert space H and suppose S is

closed under scalar multiplication (i.e., y ∈ S and α ∈ C implies αy ∈ S). Then

S⊥ = {x ∈ H | d(x, S) = ‖x‖}.

Note. By Exercise 4.A, for any set S in a Hilbert space H, the set S⊥ is a closed

subspace of H.

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(a) M ∩M⊥ = {0}.

(b) Any z ∈ H can be written uniquely as the sum of an element of M and an

element of M⊥. Specifically, z = PM(z) + PM⊥(z).

(c) M⊥⊥ = M .

(d) H is isometric to M ⊕M⊥ where the direct sum is equipped with the `2 norm.
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Definition. If {xk | k ∈ K} is an orthonormal set for which the closed linear span

(where the linear span is based on finite linear combinations) of set {xk | k ∈ K}

is all of Hilbert space H, then {xk | k ∈ K} is an orthonormal basis of H.

Note. We now step aside and consider supplemental notes from Real Analysis

with an Introduction to Wavelets and Applications, Don Hong, Jianzhong Wang,

and Robert Gardner, Elsevier Academic Press (2005). The appropriate notes are

from Sections 5.1, “Groups, Fields, and Vector Spaces,” and 5.4, “Projections and

Hilbert Space Isomorphisms.” To briefly summarize:

Theorem 5.1.4. Let 〈V, F〉 be a vector space. Then there exists a set of vectors

B ⊂ V such that (1) B is linearly independent and (2) for any v ∈ V there exists

finite sets {b1,b2, . . . ,bn} ⊂ B and {f1, f2, . . . , fn} such that v = f1b1 + f2b2 +

· · ·+ fnbn. That is, B is a Hamel basis for 〈V, F〉.

Exercise 5.1.3. If B1 and B2 are Hamel bases for a given infinite dimensional

vector space, then B1 and B2 are of the same cardinality.

Theorem 5.4.4. A Hilbert space with a Schauder basis has an orthonormal basis.

(This is a consequence of the Gram-Schmidt process.)

Theorem 5.4.8. A Hilbert space with scalar field R or C is separable if and only

if it has a countable orthonormal basis.

Theorem 5.4.9. Fundamental Theorem of Infinite Dimensional Vector

Spaces. Let H be a Hilbert space with a countable infinite orthonormal basis.

Then H is isomorphic to `2.

Note. We now return to Promoslow. . .
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Theorem 4.17. Properties of Orthonormal Sets.

Let {xk | k ∈ K} be an orthonormal set in a Hilbert space H, and let M be the

closed linear span of the elements of this sequence. Then:

(a) Given any sequence α = (αi) in C,
∑∞

i=1 αixi converges to some element x ∈ H

if and only if α ∈ `2, and in this case ‖x‖ = ‖α‖2.

(b) For any z ∈ H, PM(z) =
∑∞

i=1〈z, xi〉xi.

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Note. Before we give a proof of Theorem 4.18, we review several set theoretic

concepts. These can be found in Section 5.1 of Hong, Wang, and Gardner.

Definition. For set X, any subset of X×X is a binary relation (or simply relation)

on X. A relation R on X is reflexive if for all x ∈ X, (x, x) ∈ R. R is symmetric if

(x, y) ∈ R implies (y, x) ∈ R. R is transitive if (x, y), (y, z) ∈ R implies (x, z) ∈ R.

Definition. A relation R on X is an equivalence relation if it is reflexive, symmet-

ric, and transitive. A relation is antisymmetric if (x, y) ∈ R and (y, x) ∈ R implies

that x = y. A relation is a partial ordering if it is reflexive, antisymmetric and

transitive, and is denoted ≤. R is a total ordering if R is a partial ordering and for

any x, y ∈ X, either x ≤ y or y ≤ x.
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Definition. If set X is partially ordered by ≤, a maximal (or minimal) element of

X is x ∈ X such that x ≤ y (or y ≤ x) implies y = x. If E ⊂ X, an upper bound

for E is an element x ∈ X such that y ≤ x for all y ∈ E.

Note. The following result is equivalent to the Axiom of Choice.

Zorn’s Lemma. If X is a partially ordered set and every totally ordered subset

of X has an upper bound, then X has a maximal element.

Note. We are now ready for the proof of Theorem 4.18.

Note. As in the proof that every vector space has a basis (see Theorem 5.1.4 of

Hong, Wang, Gardner), Theorem 4.18 uses Zorn’s Lemma. Zorn’s Lemma guaran-

tees the existence of an orthonormal basis of H without actually showing how to

construct such a set. This means (as is also the case for a basis of a general vector

space) that we have no idea what is in the orthonormal basis. This makes Theo-

rem 4.18 useless for any kind of application. So we do not further study general

Hilbert spaces, but only those with a countable orthonormal (Schauder) basis. We

see in the Hong, Wang, Gardner supplements that this is equivalent to considering

separable Hilbert spaces (see Theorem 5.4.8 of Hong, Wang, Gardner).

Theorem 4.19. Any separable infinite dimensional Hilbert space is isometric to

`2.
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Note. Theorem 4.19 is just a restatement of the “Fundamental Theorem of Infinite

Dimensional Vector Spaces” (a title introduced in the Hong, Wang, and Gardner

text).

Theorem 4.20. Gram-Schmidt Orthogonalization Process.

Given a linearly independent sequence (yk) in H, there is an orthonormal sequence

(xk) such that, for any n ∈ N, span{x1, x2, . . . , xn} = span{y1, y2, . . . , yn}.

Note. In fact, the spirit of Theorem 4.20 holds in infinite dimensional spaces, and

the Gram-Schmidt Process can be used to create an orthonormal (Schauder) basis

in an infinite dimensional Hilbert space with a countable basis (this is Theorem

5.4.4 of Hong, Wang, and Gardner).

Theorem 4.21. If S is an orthonormal set in any separable Hilbert space H, then

S is either finite or countably infinite.

Note. Theorem 4.21 is also a consequence of Theorem 5.4.8 from Hong, Wang,

and Gardner.
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