4.6. Linear Operators on Hilbert Spaces

Note. This section explores a number of different kinds of bounded linear transformations (or, equivalently, "operators") from Hilbert space H to itself. We define and describe the adjoint of a bounded linear transformation, self adjoint operators, normal operators, positive operators, and unitary operators. The text doesn't mention it, but these operators have applications to quantum mechanics. A nice reference for applications to quantum mechanics is *Introduction to Hilbert Spaces* with Applications by Lokenath Debnath and Piotr Mikusínski, 3rd Edition, Elsevier Academic Press (2005) (see Chapter 7: Mathematical Foundations of Quantum Mechanics).

Definition. A sesquilinear form on Hilbert space H is a function from $H \times H$ to \mathbb{C} such that for all $x, y, z \in H$ and $\alpha \in \mathbb{C}$ we have

$$f(x+y,z) = f(x,z) + f(y,z), \quad f(\alpha x,z) = \alpha f(x,z)$$
$$f(z,x+y) = f(z,x) + f(z,y), \quad f(x,\alpha z) = \overline{\alpha} f(x,z).$$

Note. The term "sesqui" means one-and-a-half and is used since f is linear in the first entry and half linear in the second. Of course, an inner product is an example of a sequilinear form.

Definition. For any sesquilinear form f, the function $q : H \to \mathbb{C}$ defined as q(x) = f(x, x) is a quadratic form associated with f.

Definition. For sesquilinear form f on Hilbert space H, define the *norm* of f as

$$||f|| = \sup\{|f(x,y)| \mid x, y \in H, ||x|| = ||y|| = 1\}.$$

If $||f|| < \infty$, then f is bounded.

Note. Similar to Theorem 4.22 which gave a representation of bounded linear functionals, the following gives a representation of bounded sesquilinear forms.

Theorem 4.24. Given any $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself), the function f_T defined by $f_T(x, y) = \langle Tx, y \rangle$ is a sesquilinear form with norm equal to ||T||. Conversely, given any bounded sesquilinear form f, there is a unique $T \in \mathcal{B}(H)$ such that $f = f_T$.

Corollary 4.25. If $\langle Tx, x \rangle = \langle Sx, x \rangle$ for all $x \in H$ where H is a Hilbert space with complex scalars, then T = S.

Note. Corollary 4.25 follows from Theorem 4.24 based on the uniqueness claim. However, notice that Corollary 4.25 only holds when $\mathbb{F} = \mathbb{C}$. For example, for $T(x_1, x_2) = (-x_2, x_1)$ on \mathbb{R}^2 , then $\langle Tx, x \rangle = 0 = \langle 0x, x \rangle$ for all $x \in \mathbb{R}^2$, but $T \neq 0$.

Definition. Given any $T \in \mathcal{B}(H)$ (a bounded linear transformation from H to itself), its *adjoint operator*, denoted T^* , is the unique element of $\mathcal{B}(H)$ (by Theorem 4.24) associated with the sesquilinear form $f(x, y) = \langle x, Ty \rangle$.

Note. By Theorem 4.24, T^* satisfies $f(x, y) = \langle T^*x, y \rangle$, so we have $\langle Tx, y \rangle = \langle x, T^*y \rangle$.

Note. In finite dimensions, we know that T and T^* are represented by matrices. Let $\{x_1, x_2, \ldots, x_n\}$ be an ordered basis for H. Then the matrix $A_T = (a_{ij})$ which represents T is (see page 7) $a_{ij} = \langle Tx_j, x_i \rangle$ (apply T to the ordered *j*th basis element to get the *j*th column and then project that onto the *i*th basis element to get a_{ij}). Similarly, the matrix representing T^* is $A_{T^*} = (a_{ij}^*)$ where

$$a_{ij}^* = \langle T^* x_j, x_i \rangle = \langle x_j, T x_i \rangle = \overline{\langle T x_i, x_j \rangle} = \overline{a}_{ji}.$$

So the relationship between A_T and A_{T^*} is that of "conjugate transpose."

Theorem 4.26. Properties of Hilbert Space Adjoints.

Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$:

- (a) $(S+T)^* = S^* + T^*$
- (b) $(\alpha T)^* = \overline{\alpha} T^*$
- (c) $(ST)^* = T^*S^*$
- (d) $||T^*|| = ||T||$
- (e) $T^{**} = T$
- (f) $||T^*T|| = ||T||^2$.

Note. The following relates the nullspace of a bounded linear operator from a Hilbert space to itself to the range of the adjoint (and vice versa) in a rather geometric way.

Proposition 4.27. For all $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself):

- (a) $N(T^*) = R(T)^{\perp}$
- (b) $N(T)^{\perp} = \overline{R(T^*)}.$

Note. Recall that, in general, the "support" of a function is where the function is nonzero. This is consistent with the following (geometric) definition.

Definition. The support of $T \in \mathcal{B}(H)$, denoted S(T), is defined as $N(T)^{\perp}$ (the perp space of the nullspace).

Note. By Proposition 4.27, the support of T^* equals the closed linear span of T: $S(T^*) = \overline{R(T)}$. Similarly, $S(T) = \overline{R(T^*)}$. So S(T) and $S(T^*)$ are closed subspaces of H. So, by Theorem 4.14(d), we have that $H = N(T) \oplus S(T)$ and $H = N(T^*) \oplus$ $S(T^*)$. We can view T and T^* as mapping these two copies of H into each other. The publishers thought this a big deal and put the figure illustrating this (Figure 4.4) on the cover of the text. This figure illustrates that T maps N(T) to 0 and S(T) to a subset of $S(T^*)$ (since $\overline{R(T)} = S(T^*)$), and conversely with T replaced by T^* . Notice that these mappings concern the *parts* of H in the direct sum decomposition, and not mappings of the *elements* of H themselves. We might illustrate this as follows:

Note. We now study several classes of operators (i.e., elements of $\mathcal{B}(H)$).

Definition. An element $T \in \mathcal{B}(H)$ is normal if $TT^* = T^*T$.

Example. Define T on H as Tx = ix. Then

$$\langle Tx, y \rangle = \langle ix, y \rangle = i \langle x, y \rangle = \langle x, -iy \rangle = \langle x, T^*y \rangle,$$

so $T^*x = -ix$. Then $TT^*(x) = T(-ix) = i(-ix) = x$ and $T^*T(x) = T^*(ix) = -i(ix) = x$, so $T^*T = TT^*$ and T is normal.

Proposition 4.30. T is normal if and only if $||Tx|| = ||T^*x||$ for all $x \in H$.

Note. If T is normal, then $N(T) = N(T^*)$ (since ||Tx|| = 0 if and only if $||T^*x|| = 0$) and so the supports are the same as well, $S(T) = S(T^*)$. So from the diagram above and Proposition 4.27, we have that T and T* both map $S(T) = S(T^*)$ to a dense subset of $S(T) = S(T^*)$. This is used in the proof of Proposition 4.33 below.

Definition. $T \in \mathcal{B}(H)$ is self adjoint if $T = T^*$.

Note. Recall that in finite dimensions, the matrix representation of T and T^* are conjugate transposes of each other. If $\mathbb{F} = \mathbb{R}$, then the conjugation does not play a role and the matrices are simply transposes of each other. So, in finite dimensional real space \mathbb{R}^n , T is self adjoint if its matrix representation is symmetric.

Proposition 4.31. T is self-adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$.

Definition. An element $T \in \mathcal{B}(H)$ is *positive* if $\langle Tx, x \rangle \geq 0$ for all $x \in H$.

Note. Since $\langle Tx, x \rangle \geq 0$ implies $\langle Tx, x \rangle$ is real, then all positive operators are also self adjoint by Proposition 4.31. Also, for any $T \in \mathcal{B}(H)$, the operator TT^* is positive since $\langle TT^*x, x \rangle = \langle T^*x, T^*x \rangle = ||T^*x||^2 \geq 0$. The following result gives a "funny" property of positive operators—they have square roots! **Theorem 4.32.** Given any positive operator T, there is a unique positive operator A such that $A^2 = T$. Moreover, A commutes with any operator that commutes with T. A is called the *square root* of T, denoted $A = T^{1/2}$.

Note. The proof of Theorem 4.32 is given in Chapter 8.

Definition. An element $P \in \mathcal{B}(H)$ is a projection if $P = P^*$ and $P^2 = P$.

Note. Projections are positive since

$$\langle Px, x \rangle = \langle P^2x, x \rangle = \langle Px, P^*x \rangle = \langle Px, Px \rangle = ||Px||^2 \ge 0.$$

Proposition 4.33. An element $P \in \mathcal{B}(H)$ is a projection if and only if there is a closed subspace M of H such that $P = P_M$ (the projection onto M, see page 79).

Note. The text makes the following claims and describes them as "relating a geometric statement about subspaces with an algebraic one about projection operators." Let M and N be closed subspaces of Hilbert space H.

- (a) $P_M P_N = 0$ if and only if M and N are orthogonal, and in this case, $P_M + P_N$ is a projection onto the closed subspace spanned by $M \cup N$.
- (b) $P_M P_N = P_M$ if and only if $M \subseteq N$, and in this case, $P_N P_M$ is the projection onto the subspace $N \cap M^{\perp}$.

(c) $P_M P_N$ is a projection if and only if $P_M P_N = P_N P_M$, and in this case, it is the projection onto the closed subspace $K + M \cap N$. This will occur if and only if the subspaces $M \cap K^{\perp}$ and $N \cap K^{\perp}$ are orthogonal.

Definition. An element $U \in \mathcal{B}(H)$ is unitary if $U^*U = UU^* = I$ (the identity operator).

Example. We saw above that Tx = ix is a unitary operator with $T^*x = -ix$.

Proposition 4.34. An element $U \in \mathcal{B}(H)$ is unitary if and only if it is a surjective (onto) isometry.

Revised: 5/20/2015