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4.6. Linear Operators on Hilbert Spaces

Note. This section explores a number of different kinds of bounded linear transfor-
mations (or, equivalently, “operators”) from Hilbert space H to itself. We define
and describe the adjoint of a bounded linear transformation, self adjoint opera-
tors, normal operators, positive operators, and unitary operators. The text doesn’t
mention it, but these operators have applications to quantum mechanics. A nice
reference for applications to quantum mechanics is Introduction to Hilbert Spaces
with Applications by Lokenath Debnath and Piotr Mikusinski, 3rd Edition, Else-
vier Academic Press (2005) (see Chapter 7: Mathematical Foundations of Quantum

Mechanics).

Definition. A sesquilinear form on Hilbert space H is a function from H x H to

C such that for all z,y,2z € H and a € C we have
fle+y,z) = f(x,2) + f(y,2), flaz,z)=af(z,2)
f(zox+y) = f(z.2)+ f(zy), flz,az)=0af(z,z).

Note. The term “sesqui” means one-and-a-half and is used since f is linear in the
first entry and half linear in the second. Of course, an inner product is an example

of a sequilinear form.

Definition. For any sesquilinear form f, the function ¢ : H — C defined as

q(z) = f(x,x) is a quadratic form associated with f.
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Definition. For sesquilinear form f on Hilbert space H, define the norm of f as

IfIl = sup{|f(z,y)| | z,y € H,||z]| = [ly| = 1}

If || f]| < oo, then f is bounded.

Note. Similar to Theorem 4.22 which gave a representation of bounded linear

functionals, the following gives a representation of bounded sesquilinear forms.

Theorem 4.24. Given any T € B(H) (the set of bounded linear transformations
from H to itself), the function fr defined by fr(x,y) = (T'z,y) is a sesquilinear
form with norm equal to ||T'||. Conversely, given any bounded sesquilinear form f,

there is a unique 7' € B(H) such that f = fr.

Corollary 4.25. If (Tx,x) = (Sx,z) for all z € H where H is a Hilbert space

with complex scalars, then T'= S.

Note. Corollary 4.25 follows from Theorem 4.24 based on the uniqueness claim.
However, notice that Corollary 4.25 only holds when F = C. For example, for
T(z1,75) = (—x9,21) on R?, then (T'z,z) = 0 = (0x, ) for all z € R?, but T # 0.

Definition. Given any 7' € B(H) (a bounded linear transformation from H to
itself), its adjoint operator, denoted T, is the unique element of B(H) (by Theorem
4.24) associated with the sesquilinear form f(x,y) = (x, Ty).
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Note. By Theorem 4.24, T* satisfies f(x,y) = (T*xz,y), so we have (Tz,y) =
(x, T*y).

Note. In finite dimensions, we know that 1" and T™ are represented by matrices.
Let {x1,xa,...,2,} be an ordered basis for H. Then the matrix Ay = (a;;) which
represents 1" is (see page 7) a;; = (T'z;, z;) (apply T to the ordered jth basis element
to get the jth column and then project that onto the ith basis element to get a;;).

Similarly, the matrix representing 7 is Ar- = (a;;) where
CLT- = <T*33j,33i> = <33j,TSUZ'> = <TSUZ',£U]‘> = Eji.

L)

So the relationship between Ar and Ap- is that of “conjugate transpose.”

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S|Y € B(H) and a € C:

(a) (S+1)* = §*+T*
(b) (aT)" = aT*

(c) (ST)* = T*S*

(d) [T = {77

(e) T =T

(&) 17T = [|T]*
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Note. The following relates the nullspace of a bounded linear operator from a
Hilbert space to itself to the range of the adjoint (and vice versa) in a rather

geometric way.

Proposition 4.27. For all T € B(H) (the set of bounded linear transformations
from H to itself):

(a) N(T*) = R(T)*

(b) N(T)* = R(T™).

Note. Recall that, in general, the “support” of a function is where the function is

nonzero. This is consistent with the following (geometric) definition.

Definition. The support of T € B(H), denoted S(T), is defined as N(T)* (the

perp space of the nullspace).

Note. By Proposition 4.27, the support of T equals the closed linear span of T"
S(T*) = R(T). Similarly, S(T) = R(T*). So S(T) and S(T*) are closed subspaces
of H. So, by Theorem 4.14(d), we have that H = N(T) ® S(T) and H = N(T*) ®
S(T*). We can view T and T™ as mapping these two copies of H into each other.
The publishers thought this a big deal and put the figure illustrating this (Figure
4.4) on the cover of the text. This figure illustrates that 7" maps N(7') to 0 and

S(T) to a subset of S(T*) (since R(T) = S(T*)), and conversely with T" replaced
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by T™*. Notice that these mappings concern the parts of H in the direct sum
decomposition, and not mappings of the elements of H themselves. We might

illustrate this as follows:

R(T*)\ {0}

Note. We now study several classes of operators (i.e., elements of B(H)).

Definition. An element 7" € B(H) is normal if TT* = T*T.

Example. Define T'on H as T'r = ixz. Then

(Tx,y) = (iz,y) =iz, y) = (x, —iy) = (z,T"y),

so T"z = —ix. Then TT*(x) = T(—ix) = i(—iz) =  and T*T(x) = T*(ix) =
—i(iz) =z, so T*T = TT* and T is normal.
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Proposition 4.30. 7T is normal if and only if ||Tz|| = ||T*z| for all z € H.

Note. If T is normal, then N(T") = N(T™*) (since ||Tz|| = 0 if and only if || T*z|| =
0) and so the supports are the same as well, S(T') = S(T%). So from the diagram
above and Proposition 4.27, we have that 7" and 7% both map S(T') = S(T™) to a
dense subset of S(T') = S(T™). This is used in the proof of Proposition 4.33 below.

Definition. 7' € B(H) is self adjoint if T = T*.

Note. Recall that in finite dimensions, the matrix representation of 7" and 1™ are
conjugate transposes of each other. If F = R, then the conjugation does not play a
role and the matrices are simply transposes of each other. So, in finite dimensional

real space R", T is self adjoint if its matrix representation is symmetric.

Proposition 4.31. T is self-adjoint if and only if (T'z, x) is real for all x € H.

Definition. An element T' € B(H) is positive if (T'z,z) > 0 for all z € H.

Note. Since (Tx,z) > 0 implies (T'z,x) is real, then all positive operators are
also self adjoint by Proposition 4.31. Also, for any 7' € B(H), the operator TT* is
positive since (TT*x,z) = (T*z, T*x) = ||T*z||*> > 0. The following result gives a

“funny” property of positive operators—they have square roots!
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Theorem 4.32. Given any positive operator 7', there is a unique positive operator
A such that A2 = T. Moreover, A commutes with any operator that commutes

with 7. A is called the square root of T, denoted A = TV/2.

Note. The proof of Theorem 4.32 is given in Chapter 8.

Definition. An element P € B(H) is a projection if P = P* and P? = P.

Note. Projections are positive since

(Pz,x) = (P?x,2) = (Px, P*z) = (Px, Px) = ||Pz||* > 0.

Proposition 4.33. An element P € B(H) is a projection if and only if there is a
closed subspace M of H such that P = P); (the projection onto M, see page 79).

Note. The text makes the following claims and describes them as “relating a
geometric statement about subspaces with an algebraic one about projection oper-

ators.” Let M and N be closed subspaces of Hilbert space H.

(a) Py Py =0 if and only if M and N are orthogonal, and in this case, Py + Py

is a projection onto the closed subspace spanned by M U N.

(b) Py Py = Py if and only if M C N, and in this case, Py — Py is the projection
onto the subspace N N M*.
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(c) Py Py is a projection if and only if Py;Py = Py Py, and in this case, it is the
projection onto the closed subspace K + M N N. This will occur if and only
if the subspaces M N K+ and N N K=+ are orthogonal.

Definition. An element U € B(H) is unitary if U*U = UU* = I (the identity

operator).

Example. We saw above that Tx = iz is a unitary operator with T%x = —ix.

Proposition 4.34. An element U € B(H) is unitary if and only if it is a surjective

(onto) isometry.
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