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4.6. Linear Operators on Hilbert Spaces

Note. This section explores a number of different kinds of bounded linear transfor-

mations (or, equivalently, “operators”) from Hilbert space H to itself. We define

and describe the adjoint of a bounded linear transformation, self adjoint opera-

tors, normal operators, positive operators, and unitary operators. The text doesn’t

mention it, but these operators have applications to quantum mechanics. A nice

reference for applications to quantum mechanics is Introduction to Hilbert Spaces

with Applications by Lokenath Debnath and Piotr Mikuśınski, 3rd Edition, Else-

vier Academic Press (2005) (see Chapter 7: Mathematical Foundations of Quantum

Mechanics).

Definition. A sesquilinear form on Hilbert space H is a function from H × H to

C such that for all x, y, z ∈ H and α ∈ C we have

f(x + y, z) = f(x, z) + f(y, z), f(αx, z) = αf(x, z)

f(z, x + y) = f(z, x) + f(z, y), f(x, αz) = αf(x, z).

Note. The term “sesqui” means one-and-a-half and is used since f is linear in the

first entry and half linear in the second. Of course, an inner product is an example

of a sequilinear form.

Definition. For any sesquilinear form f , the function q : H → C defined as

q(x) = f(x, x) is a quadratic form associated with f .
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Definition. For sesquilinear form f on Hilbert space H, define the norm of f as

‖f‖ = sup{|f(x, y)| | x, y ∈ H, ‖x‖ = ‖y‖ = 1}.

If ‖f‖ < ∞, then f is bounded.

Note. Similar to Theorem 4.22 which gave a representation of bounded linear

functionals, the following gives a representation of bounded sesquilinear forms.

Theorem 4.24. Given any T ∈ B(H) (the set of bounded linear transformations

from H to itself), the function fT defined by fT (x, y) = 〈Tx, y〉 is a sesquilinear

form with norm equal to ‖T‖. Conversely, given any bounded sesquilinear form f ,

there is a unique T ∈ B(H) such that f = fT .

Corollary 4.25. If 〈Tx, x〉 = 〈Sx, x〉 for all x ∈ H where H is a Hilbert space

with complex scalars, then T = S.

Note. Corollary 4.25 follows from Theorem 4.24 based on the uniqueness claim.

However, notice that Corollary 4.25 only holds when F = C. For example, for

T (x1, x2) = (−x2, x1) on R
2, then 〈Tx, x〉 = 0 = 〈0x, x〉 for all x ∈ R

2, but T 6= 0.

Definition. Given any T ∈ B(H) (a bounded linear transformation from H to

itself), its adjoint operator, denoted T ∗, is the unique element of B(H) (by Theorem

4.24) associated with the sesquilinear form f(x, y) = 〈x, Ty〉.
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Note. By Theorem 4.24, T ∗ satisfies f(x, y) = 〈T ∗x, y〉, so we have 〈Tx, y〉 =

〈x, T ∗y〉.

Note. In finite dimensions, we know that T and T ∗ are represented by matrices.

Let {x1, x2, . . . , xn} be an ordered basis for H. Then the matrix AT = (aij) which

represents T is (see page 7) aij = 〈Txj , xi〉 (apply T to the ordered jth basis element

to get the jth column and then project that onto the ith basis element to get aij).

Similarly, the matrix representing T ∗ is AT ∗ = (a∗
ij) where

a∗
ij = 〈T ∗xj , xi〉 = 〈xj , Txi〉 = 〈Txi, xj〉 = aji.

So the relationship between AT and AT ∗ is that of “conjugate transpose.”

Theorem 4.26. Properties of Hilbert Space Adjoints.

Given S, Y ∈ B(H) and α ∈ C:

(a) (S + T )∗ = S∗ + T ∗

(b) (αT )∗ = αT ∗

(c) (ST )∗ = T ∗S∗

(d) ‖T ∗‖ = ‖T‖

(e) T ∗∗ = T

(f) ‖T ∗T‖ = ‖T‖2.
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Note. The following relates the nullspace of a bounded linear operator from a

Hilbert space to itself to the range of the adjoint (and vice versa) in a rather

geometric way.

Proposition 4.27. For all T ∈ B(H) (the set of bounded linear transformations

from H to itself):

(a) N(T ∗) = R(T )⊥

(b) N(T )⊥ = R(T ∗).

Note. Recall that, in general, the “support” of a function is where the function is

nonzero. This is consistent with the following (geometric) definition.

Definition. The support of T ∈ B(H), denoted S(T ), is defined as N(T )⊥ (the

perp space of the nullspace).

Note. By Proposition 4.27, the support of T ∗ equals the closed linear span of T :

S(T ∗) = R(T ). Similarly, S(T ) = R(T ∗). So S(T ) and S(T ∗) are closed subspaces

of H. So, by Theorem 4.14(d), we have that H = N(T )⊕ S(T ) and H = N(T ∗)⊕

S(T ∗). We can view T and T ∗ as mapping these two copies of H into each other.

The publishers thought this a big deal and put the figure illustrating this (Figure

4.4) on the cover of the text. This figure illustrates that T maps N(T ) to 0 and

S(T ) to a subset of S(T ∗) (since R(T ) = S(T ∗)), and conversely with T replaced
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by T ∗. Notice that these mappings concern the parts of H in the direct sum

decomposition, and not mappings of the elements of H themselves. We might

illustrate this as follows:

Note. We now study several classes of operators (i.e., elements of B(H)).

Definition. An element T ∈ B(H) is normal if TT ∗ = T ∗T .

Example. Define T on H as Tx = ix. Then

〈Tx, y〉 = 〈ix, y〉 = i〈x, y〉 = 〈x,−iy〉 = 〈x, T ∗y〉,

so T ∗x = −ix. Then TT ∗(x) = T (−ix) = i(−ix) = x and T ∗T (x) = T ∗(ix) =

−i(ix) = x, so T ∗T = TT ∗ and T is normal.
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Proposition 4.30. T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

Note. If T is normal, then N(T ) = N(T ∗) (since ‖Tx‖ = 0 if and only if ‖T ∗x‖ =

0) and so the supports are the same as well, S(T ) = S(T ∗). So from the diagram

above and Proposition 4.27, we have that T and T ∗ both map S(T ) = S(T ∗) to a

dense subset of S(T ) = S(T ∗). This is used in the proof of Proposition 4.33 below.

Definition. T ∈ B(H) is self adjoint if T = T ∗.

Note. Recall that in finite dimensions, the matrix representation of T and T ∗ are

conjugate transposes of each other. If F = R, then the conjugation does not play a

role and the matrices are simply transposes of each other. So, in finite dimensional

real space R
n, T is self adjoint if its matrix representation is symmetric.

Proposition 4.31. T is self-adjoint if and only if 〈Tx, x〉 is real for all x ∈ H.

Definition. An element T ∈ B(H) is positive if 〈Tx, x〉 ≥ 0 for all x ∈ H.

Note. Since 〈Tx, x〉 ≥ 0 implies 〈Tx, x〉 is real, then all positive operators are

also self adjoint by Proposition 4.31. Also, for any T ∈ B(H), the operator TT ∗ is

positive since 〈TT ∗x, x〉 = 〈T ∗x, T ∗x〉 = ‖T ∗x‖2 ≥ 0. The following result gives a

“funny” property of positive operators—they have square roots!



4.6. Linear Operators on Hilbert Spaces 7

Theorem 4.32. Given any positive operator T , there is a unique positive operator

A such that A2 = T . Moreover, A commutes with any operator that commutes

with T . A is called the square root of T , denoted A = T 1/2.

Note. The proof of Theorem 4.32 is given in Chapter 8.

Definition. An element P ∈ B(H) is a projection if P = P ∗ and P 2 = P .

Note. Projections are positive since

〈Px, x〉 = 〈P 2x, x〉 = 〈Px, P ∗x〉 = 〈Px, Px〉 = ‖Px‖2 ≥ 0.

Proposition 4.33. An element P ∈ B(H) is a projection if and only if there is a

closed subspace M of H such that P = PM (the projection onto M , see page 79).

Note. The text makes the following claims and describes them as “relating a

geometric statement about subspaces with an algebraic one about projection oper-

ators.” Let M and N be closed subspaces of Hilbert space H.

(a) PMPN = 0 if and only if M and N are orthogonal, and in this case, PM + PN

is a projection onto the closed subspace spanned by M ∪ N .

(b) PMPN = PM if and only if M ⊆ N , and in this case, PN −PM is the projection

onto the subspace N ∩ M⊥.
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(c) PMPN is a projection if and only if PMPN = PNPM , and in this case, it is the

projection onto the closed subspace K + M ∩ N . This will occur if and only

if the subspaces M ∩ K⊥ and N ∩ K⊥ are orthogonal.

Definition. An element U ∈ B(H) is unitary if U ∗U = UU ∗ = I (the identity

operator).

Example. We saw above that Tx = ix is a unitary operator with T ∗x = −ix.

Proposition 4.34. An element U ∈ B(H) is unitary if and only if it is a surjective

(onto) isometry.
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