4.7. Order Relation on Self-Adjoint Operators

Note. Just as the positive set allows us to put an order on the reals, the existence of positive operators allows us to put a *partial* ordering on the set of self-adjoint operators.

Definition. Self-adjoint operators A and B satisfy the condition A is less than or equal to B, denoted $A \leq B$, if operator B - A is positive.

Note. If T_1 and T_2 are positive (i.e., $\langle T_1 x, x \rangle \ge 0$ and $\langle T_2 x, x \rangle \ge 0$ for all $x \in H$), then

$$\langle (T_1 + T_2)x, x \rangle = \langle T_1x + T_2x, x \rangle = \langle T_1x, x \rangle + \langle T_2x, x \rangle \ge 0.$$

So the sum of two positive operators is positive. So, if $A \leq B$ and $B \leq C$, then $(B - A) + (C - B) = C - A \geq 0$ and so $A \leq C$. So transitivity holds. For all self-adjoint $A, A \leq A$ since A - A is positive, and " \leq " is reflexive. If $A \leq B$ and $B \leq A$ then for all $x \in H$, $\langle (B - A)x, x \rangle \geq 0$ and $\langle (A - B)x, x \rangle \geq 0$. Notice $\langle (B - A)x, x \rangle + \langle (A - B)x, x \rangle = \langle 0, x \rangle = 0$ for all $x \in H$. So it must be that $\langle (B - A)x, x \rangle = 0$ and $\langle (A - B)x, x \rangle = 0$ for all $x \in H$. Therefore, A - B = 0 by Corollary 4.25, and A = B. Therefore \leq is a partial ordering.

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

1

Revised: 5/20/2015