5.3. Complex Version of the Hahn-Banach Theorem

Note. In this section, we consider linear spaces with complex scalars. Since there is no ordering on \(\mathbb{C} \), we cannot compare the values of linear functionals but we can compare the sizes (moduli) of linear functionals.

Note. We denote the set of all linear mappings from \(X \) to \(\mathbb{C} \) as \(X^\mathbb{C} \). (Be careful when reading the text, because their use of this notation looks a lot like \(X \) complement!)

Proposition 5.2. A function \(f : X \to \mathbb{C} \) is in \(X^\mathbb{C} \) (i.e., \(f \) is a complex valued linear functional) if and only if Re\((f)\) and Im\((f)\) are both linear real valued functionals on \(X \) and, for all \(x \in X \), Im\((f(x)) = -\text{Re}(f(ix))\).

Theorem 5.3. Complex Hahn-Banach Extension Theorem.
Suppose \(\| \cdot \| \) is a seminorm on a complex linear space \(X \) and that \(f_0 \) is a linear functional defined on a subspace \(Y \) of \(X \) such that \(|f_0(y)| \leq \|y\| \) for all \(y \in Y \). Then \(f_0 \) has an extension to a linear functional \(f \) on \(X \) such that \(|f(x)| \leq \|x\| \) for all \(x \in X \).

Revised: 5/20/2015