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Chapter 6. Duality

6.1. Examples of Dual Spaces

Note. Recall that the dual space of a normed linear space X is the space of all

bounded linear functionals from X to the scalar field F, originally denoted B(X, F),

but more often denoted X∗. In this section we find the duals of the `p spaces for

1 ≤ p < ∞ and Lp for 1 ≤ p < ∞. Our lack of background in Lebesgue measure

and integration does not allow us to give totally rigorous proofs for some of these

results. In the following result, the verb “is” means that there is a surjective

isometry between the two relevant spaces.

Theorem 6.1.

(a) The dual of c0 (the space of all sequences which converge to 0, with the sup

norm) is `1.

(b) The dual of `1 is `∞.

(c) The dual of `p for 1 < p < ∞ is `q where
1

p
+

1

q
= 1.

Note. Our text is a little unclear (in my opinion) on some of the details of the

proof of Theorem 6.1. Therefore, we present a proof that follows the technique of

Reed and Simon’s Functional Analysis (see pages 73 and 74), but use the notation

of Promislow.
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Proof of Theorem 6.1(a). The dual of c0 is `1.

(1) Let f = (f(1), f(2), . . .) ∈ c0 and let g = (g(1), g(2), . . .) ∈ `1. Then we claim

the mapping φg(f) =

∞
∑

k=1

f(k)g(k) is a bounded linear functional on c0. By Hölder’s

Inequality for `p (1 ≤ p < ∞) we have (since c0 ⊆ `∞, we use the sup norm on c0)
∞
∑

k=1

|f(k)g(k)| ≤ ‖g‖1‖f‖∞ (∗)

so the series converges absolutely and for f1, f2 ∈ c0 we have

φg(f1 + f2) =
∞
∑

k=1

(f1 + f2)(k)g(k) =
∞
∑

k=1

(f1(k) + f2(k))g(k)

=

∞
∑

k=1

f1(k)g(k) +

∞
∑

k=1

f2(k)g(k) = φg(f1) + φg(f2)

and for any α ∈ F, we have

φg(αf) =

∞
∑

k=1

(αf)(k)g(k) =

∞
∑

k=1

αf(k)g(k) = α

∞
∑

k=1

f(k)g(k) = αφg(f).

So φg : c0 → F is linear. From (∗),

|φg(f)| =

∣

∣

∣

∣

∣

∞
∑

k=1

f(k)g(k)

∣

∣

∣

∣

∣

≤

∞
∑

k=1

|f(k)g(k)| ≤ ‖g‖1‖f‖∞,

so

‖φg‖ = sup{|φg(f)| | f ∈ c0, ‖f‖∞ = 1} ≤ ‖g‖1 < ∞,

so φg is a bounded linear functional.

(2) Now we show that all bounded linear functionals are of the form φg for some

g ∈ `1. Let φ be a bounded linear functional on c0. Define δi ∈ c0 as the sequence

with ith entry 1 and all other entries 0. For each k ∈ N, define g(k) = φ(δk) and

define

h(k) =







|g(k)|/g(k) if g(k) 6= 0

0 if g(k) = 0.
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For fixed N ∈ N, let hN =

N
∑

k=1

h(k)δk (recall δk ∈ c0 and h(k) ∈ F). Then hN ∈ c0

and ‖hN‖∞ = 1. Then

φ(hN) = φ

(

N
∑

k=1

h(k)δk

)

=
N
∑

k=1

φ(h(k)δk)

=

N
∑

k=1

h(k)φ(δk)

=

N
∑

k=1

h(k)g(k) since g(k) = φ(δk)

=

N
∑

k=1

|g(k)| by definition of h(k).

Now |φ(hN)| ≤ ‖hN‖∞‖φ‖c∗
0

by the definition of operator norm in c∗0. So

N
∑

k=1

|g(k)| =

N
∑

k=1

|φ(δk)| by definition of g(k)

≤ ‖φ‖c∗
o

since ‖hN‖∞ = 1.

Now the right hand side depends only on φ and N ∈ N on the left had side is

arbitrary. So

∞
∑

k=1

|g(k)| =

∞
∑

k=1

|φ(δk)| ≤ ‖φ‖c∗
o

, (∗∗)

and g ∈ `1.

(3) Now we want to show that φ given as an element of c∗
0

is the same as φg

given in Part (1) of the proof where g is defined in Part (2). By definition, for

any f ∈ c00 (the subset of c0 of all sequences with only a finite number of nonzero

entries), φ(f) = φg(f). By Example 2.18, c00 is a dense subset of c0. Since φ is
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continuous (it is bounded by definition; apply Theorem 2.6) and φg is continuous

(it is bounded by ‖g‖1 as shown above; apply Theorem 2.6) and φ = φg on dense

subset c00 in c0, then φ = φg on c0. Therefore, for any φ ∈ c∗0, there is g ∈ `1 such

that φ = φg. This shows that the mapping g → φg is surjective (onto).

(4) To see that g → φg is an isometry, we have that ‖φg‖c∗
0
≤ ‖g‖1 from Part

(1) (it follows from Hölder’s Inequality) and ‖g‖1 ≤ ‖φg‖c∗
0

by (∗∗) of Part (2).

Therefore ‖g‖1 = ‖φg‖c∗
0

is an isometry. So there is a surjective isometry from `1

to c∗
0

and so the dual of c0 is `1.

Theorem 6.2. If X∗ is separable, then X is separable.

Note. The text now discusses signed measures, σ-finite measures, absolutely con-

tinuous measures, and the Radon-Nikodym Theorem. We skip these topics here.

For a thorough, detailed exploration of these topics, take our Real Analysis 2 class

(MATH 5220). These topics are covered in Royden and Fitzpatrick’s Real An-

laysis 4th Edition, Chapters 17 and 18. I have online notes of these topics at:

http://faculty.etsu.edu/gardnerr/5210/notes3.htm

Note. We paraphrase a result in the text and take the statement of the result

from Royden and Fitzpatrick. For a thorough proof, see Chapter 8 of their Real

Analysis (page 160) for the result as stated below. For a statement in the more

general setting of σ-finite measure spaces (as Promislow gives) see their Chapter

19.
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Theorem 6.3′. The Riesz Representation Theorem for the Dual of Lp(E).

Let E be a measurable set of real numbers, let 1 ≤ p < ∞, let q satisfy 1

p
+ 1

q
= 1.

For each g ∈ Lq(E), define the bounded linear functional Rg on Lp(E) by

Rg(f) =

∫

E

gf for all f ∈ Lp(E).

Then for each bounded linear functional T on Lp(E), there is a unique function

g ∈ Lq(E) for which Rg = T and ‖T‖∗ = ‖g‖q.

Note. To simplify the statement of Theorem 6.3, we can say: “The dual space of

Lp is Lq where 1

p
+ 1

q
= 1 and 1 ≤ p < ∞.”
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