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6.3. Double Duals and Reflexivity

Note. In this section, we look at the dual of the dual of a space (called the double

dual of the original space). A Banach space mapped in a certain way into its double

deal, is called reflexive. We look at some properties of reflexive spaces.

Definition. Given a normed linear space X , the double dual of X , denoted X∗∗,

is the dual of X∗.

Note. Let x ∈ X . Define an element x̂ ∈ X∗∗ as x̂(f) = f(x) for all f ∈ X∗.

Notice that f(x) and x̂(f) are elements of the scalar field F. (So we start with

x ∈ X and then define x̂ by letting the argument of x̂ range over all f ∈ X∗.)

Theorem 6.8. The mapping x → x̂ (which maps X to X∗∗) is a linear isometry.

Note. Theorem 6.8 shows that every normed linear space X is a subspace of

the space of operators B(X∗, F) (OK, there is a linear isometry between X and a

subspace of B(X∗, F)). Recall that Theorem 2.15 says “If Y is complete, then so

is B(X,Y ).” With F ∈ {R, C}, then X∗ = B(X, F) is complete, and so is X∗∗ =

B(X∗, F). This allows us to finish the proof of the “Completion Theorem” (Theorem

2.22) and show that for any normed linear space X , there is a completion—namely,

X∗∗.
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Theorem 6.9. General Uniform Boundedness Principle.

Let A be a subset of a normed linear space X such that for all f ∈ X∗ we have

that f(A) is a bounded set of scalars. Then A is bounded.

Definition. A Banach space X for which the embedding of X in X∗∗ given by

x → x̂ is surjective (onto) is reflexive.

Note. Since X∗∗ is complete, it would only make sense to discuss reflexive Banach

spaces, and not reflexive normed linear spaces in general.

Note. The text claims (page 133) that properties of reflexive Banach spaces are

similar to properties of Hilbert spaces (the text uses the term “behavior”). One

example is Exercise 6.4: Let S be a reflexive Banach space and f a bounded linear

functional on X . Then

‖f‖ = sup{|f(x)| | ‖x‖ ≤ 1} = max{|f(x)| | ‖x‖ ≤ 1}.

That is, f attains its maximum value on the unit disk.

Note. Most of the Banach spaces we encounter will be reflexive. An example of

a nonreflexive space is c0, the space of all sequences converging to 0. This is a

separable space (one can show that the countable set of all sequences of rational

numbers for which all but a finite number of entries are nonzero is dense in c0).

From Theorem 6.1, c∗
0

= `1 and c∗∗
0

= (`1)∗ = `∞. Now `∞ is not separable

(Proposition 2.42), so c∗∗
0

= `∞ 6= c0 (well, there is not a surjective isometry).
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Theorem 6.10. Lp is reflexive for 1 < p < ∞.

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Theorem 6.12. A Banach space X is reflexive if and only if X∗ is reflexive.
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