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8.3. General Properties of the Spectrum

Note. In this section we elaborate on the spectrum by stating the Spectral Map-

ping Theorem and define the spectral radius. The results of the section concern

Banach algebras.

Theorem 8.5. The Spectral Mapping Theorem.

Let p be a polynomial. Let X be a linear space. Then µ ∈ σ(p(x)) if and only if

µ = p(λ) for some λ ∈ σ(x), where x ∈ X .

Example 8.6. Applications of the Spectral Mapping Theorem.

(a) Let x ∈ X , X an algebra, such that xn = 0 for some n ∈ N. Such x is nilpotent.

Consider p(t) = tn (for the n above). Since p(x) = xn = 0 and the spectrum

of the 0 operator is {0} (0 − λe has inverse (−1/λ)e, unless λ = 0), then by

the Spectral Mapping Theorem we have that µ ∈ σ(p(x)) = σ(0) = {0} if and

only if 0 = µ ∈ p(λ) for some λ ∈ σ(x). So p(λ) = λn = 0 and hence λ = 0.

So for x nilpotent, x − λe is invertible unless λ = 0.

(b) Let x ∈ X , X an algebra, such that x2 = x. Such x is idempotent. Consider

p(t) = t2 − t. By the Spectral Mapping Theorem, µ ∈ σ(p(x)) = σ(0) = {0}

(for idempotent x) if and only if 0 = µ ∈ p(λ) for some λ ∈ σ(x). Since the

zeros of p are 0 and 1, then the values of λ ∈ σ(x) must be 0 and 1. That is,

σ(x) ⊆ {0, 1}.
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Proposition 8.7. Suppose x is invertible. Then λ ∈ σ(x) if and only if λ−1 ∈

σ(x−1).

Note. In any unitary algebra, e is invertible (it is its own inverse), so we would

expect that elements of the algebra close to e should be invertible. This is quantified

in the following.

Proposition 8.8. Let X be a (complete) Banach algebra. if ‖e − x‖ < 1, then x

is invertible.

Proposition 8.9. The set of invertible elements of a Banach algebra is an open

set.

Theorem 8.10. Let X be a Banach algebra. Then for all x ∈ X , σ(x) is a compact

subset of C.

Definition. The spectral radius of an element x of a Banach algebra, denoted r(x),

is

r(x) = sup{|λ| | λ ∈ σ(x)}.

If σ(x) = ∅, we take r(x) = 0.
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Proposition 8.11. Let X be a Banach algebra. Then for any x ∈ X , the spectral

radius of x satisfies

r(x) ≤ inf{‖xn‖1/n | n ∈ N}.

Note. Our next task is to actually compute (x − λe)−1 for λ /∈ σ(x).

Definition. A sequence of positive real numbers (an) is submultiplicative if an+m ≤

anam for all n,m ∈ N.

Theorem 8.12. If (an) is a submultiplicative sequence of positive real numbers,

then (a
1/n
n ) converges to inf{a

1/n
n | n ∈ N}.

Note. We use Theorem 8.12 to represent (x − λe)−1 as a series in the following

result.

Theorem 8.13. If inf{‖an‖1/n | n ∈ N} < |λ| then (x − λe) is invertible and

(x − λe)−1 = −

∞∑

k=0

xk

λk+1
.

Definition. An element x in a Banach algebra that satisfies limn→∞ ‖xn‖1/n = 0

is quasi-nilpotent.
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Note. We now present two “deeper properties” of the spectral radius and the

spectrum. First, we need a fundamental result from complex analysis.

Theorem 8.14. Let φ : C → C be a complex-valued function of a complex variable

such that φ is differentiable at all points of an open disc {z ∈ C | |z| < r}. Then

there is a unique sequence of complex numbers (an)
∞
n=1 such that the power series

∑∞
n=0

anz
n converges to φ(z) at all points of this disc.

Note. The following result shows that the bound on the spectral radius given in

Proposition 8.11 in fact reduces to an equality.

Theorem 8.15. For all elements x in a Banach algebra A, r(x) = inf{‖xn‖1/n |

n ∈ N}.

Theorem 8.16. For all elements x of a Banach algebra, σ(x) 6= 0.
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