8.4. Numerical Range

Note. We now introduce a new set of complex numbers which, for a bounded linear operator on a Hilbert space, contains the spectrum of the operator.

Definition. Let H be a Hilbert space. For $T \in \mathcal{B}(H)$, define the numerical range of T as the set $\{\langle Tx, x \rangle \mid x \in H, ||x|| = 1\}$. The numerical radius of T, denoted w(T), is the supremum of the absolute values of the elements in the numerical range: $w(T) = \sup\{|\langle Tx, x \rangle| \mid x \in H, ||x|| = 1\}$.

Note. By the Cauchy-Schwartz Inequality (Theorem 4.3), for all $x \in H$ with ||x|| = 1, we have

$$|\langle Tx, x \rangle| \le ||Tx|| ||x|| = ||Tx|| \le ||T|| ||x|| = ||T||.$$

So $w(T) \leq ||T||$.

Proposition 8.17. For H a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of T.

Revised: 5/12/2017