8.5. Spectrum of a Normal Operator

Note. In this section, we discuss the spectrum and numerical radius of several of the special operators introduced in Section 4.6 (namely, self-adjoint, normal, and unitary).

Recall. The adjoint of operator $T \in \mathcal{B}(H)$ (where H is a Hilbert space) is the unique operator T^* (see Theorem 4.24) such that $\langle Tx,y\rangle = \langle x,T^*y\rangle$ for all $x,y\in H$. Operator T is self-adjoint if $T=T^*$, normal if $TT^*=T^*T$, is unitary if $TT^*=T^*T=I$, and is a projection if $T=T^*$ and $T^2=T$. T is positive if $\langle Tx,x\rangle \geq 0$ for all $x\in H$.

Proposition 8.18. Let H be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of H is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}.$

Note. We now turn to self-adjoint operators and consider the numerical radius and specific elements of $\sigma(T)$.

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then for all unit vectors x and y in H, we have $Re(\langle Tx, y \rangle) \leq w(T)$.

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then w(T) = ||T||.

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either $||T|| \in \sigma(T)$ or $-||T|| \in \sigma(T)$.

Note. Propositions 8.20 and 8.21 combine to show that for self-adjoint T, the spectral radius is r(T) = ||T||. In fact, the same result holds for normal operators, as shown in the second of the following two results.

Proposition 8.22. If T is a normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Theorem 8.23. If T is a self adjoint or normal operator on a Hilbert space, then r(T) = ||T||.

Note. We now consider eigenvalues and eigenspaces for a self-adjoint operator.

8.5. Spectrum of a Normal Operator

Proposition 8.24. Let H be a Hilbert space and $T \in \mathcal{B}(H)$ be self-adjoint. Then

eigenspaces corresponding to distinct eigenvalues of T are orthogonal.

Proposition 8.25. Let H be a Hilbert space and $T \in \mathcal{B}(H)$ be self-adjoint. If H is

separable, then the number of distinct eigenvalues of T is either finite or countably

infinite.

Note. In fact, Propositions 8.24 and 8.25 also hold for normal operators, as is to

be shown in Exercise 8.11.

Revised: 5/13/2017

3