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9.2. Compactness Criteria in Metric Spaces

Note. In this section, we introduce the ideas of relative compactness and total

boundedness. We relate these ideas in metric spaces, Banach spaces, and function

spaces. We define “equicontinuity” and prove the Arzela-Ascoli Theorem.

Definition. If A and B are subsets of a metric space (X, d) and if ε ≥ 0, then we

say “A ⊆ε B” if, given any a ∈ A, there is an element b ∈ B with d(a, b) ≤ ε.

Note. Promislow calls this “ approximately contained in” and observes that

A ⊆ε B and B ⊆δ C implies that A ⊆ε+δ C.

Definition. A set A in a metric space is totally bounded if for any ε > 0 there is a

finite set F such that A ⊆ε F . The set F is a ε-net for A.

Note. A totally bounded set A is bounded. This is because for F a ε-net of A,

we have diam(A) ≤ diam(F) + 2ε and diam(F ) < ∞ since F is finite. However, in

`2, the set {(1, 0, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, 0, . . .) . . .} is bounded but not totally

bounded.

Proposition 9.1. Set A in a metric space is totally bounded if and only if any

sequence (an) of points in A has a Cauchy subsequence.
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Corollary 9.2.A. If set K in a normed linear space is relatively compact then

K is totally bounded. In a complete space any totally bounded set is relatively

compact.

Proof. If set K in a normed linear space is relatively compact then, by defini-

tion, any sequence in K has a convergent subsequence. Then K is totally bounded

by Proposition 9.1, since convergent sequences are Cauchy.

In a complete space (where Cauchy sequences converge) any totally bounded set

is relatively compact (again, by Proposition 9.1).

Note. Recall that a compact set in a normed linear space is closed and bounded

by The Compact Set Theorem (see the class notes for Section 2.2). The next result

classifies relatively compact sets in a Banach space. Notice that a relatively compact

set is totally bounded, as just noted, and totally bounded sets are bounded.

Proposition 9.2. A bounded set A of a Banach space X is relatively compact

if and only if for any ε > 0 there is a finite dimensional subspace Y of X with

A ⊆ε Y .

Note. We now apply Proposition 9.2 to function spaces.
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Proposition 9.3. Let S be a set and B(S) the set of functions from S to field F

(where F = R or F = C) under the sup norm. Suppose that A is a bounded subset

of B(E) satisfying the following: For any ε > 0, we can partition S into a finite

number of pairwise disjoint subsets S1, S2, . . . , Sn such that, given any i, any two

points s, t ∈ Si, and any f ∈ A, we have |f(s) − f(t)| ≤ ε. Then A is relatively

compact (in B(S)).

Note. Next, we will use Proposition 9.3 to address relative compactness in the

space of continuous functions on S where S is a compact metric space (in the

Arzela-Ascoli Theorem). To do so, we need a definition.

Definition. A set A of functions defined on a metric space S is equicontinuous at

a point t0 ∈ S if for any given ε > 0 there is δ > 0 such that d(t, t0) < δ implies that

|f(t)−f(t0)| < ε for all f ∈ A. Set A is an equicontinuous set if it is equicontinuous

at all points of S.

Note. Equicontinuity of a set of functions is similar to uniform continuity on a

set. However, in uniform continuity there is a single function and the input values

range of a set of “points”; in equicontinuity at a point there is a single given input

value (“point”) but the functions vary over a set of functions (each considered at

the given point).
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Example 9.4. Let S be any subset of a normed linear space X and let A be a

bounded subset of X∗, say each linear functional in X∗ is bounded by K (so T ∈ A

implies ‖T‖ ≤ K). Then A is equicontinuous on S since any s ∈ S and f ∈ A we

can we can for given ε > 0 choose δ − ε/K.

Theorem 9.5. Arzela-Ascoli Theorem.

If S is a compact metric space, a subset A of C(S) (the set of continuous real

valued or complex valued functionals on S) is relatively compact if and only if it is

bounded and equicontinuous.

Note. We now give a condition for the relative compactness of a set in `p.

Theorem 9.6. Let A be a bounded subset of `p that has uniformly small tails.

That is, for any ε > 0 there exists N ∈ N such that for all f ∈ A,
∑∞

i=N |f(i)|p < ε.

Then A is relatively compact.

Note. Recall that operator T ∈ B(X,Y ) (where X and Y are normed linear

spaces) is compact if for all bounded sets in X , T (B) is relatively compact. To

show that T is compact, it is sufficient to show that T (B(1)) is relatively compact

(where B(1) is the open unit ball); see the comment on page 187. We conclude

this section by giving two examples of compact operators.
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Theorem 9.7. The multiplication operator Mf on `p is compact if and only if

f(n) → 0.

Example 9.8. Let k be a continuous real valued function on the closed unit

square of R
2. Define K on C([01, ]) by K(f(s)) =

∫

1

0
k(s, t)f(t) dt. Since k(s, t)

is bounded (a continuous function on a compact set) then operator K is bounded:

Let max |k(s, t)| = M , then |K(f(s))| =
∣

∣

∣

∫ t

0
k(s, t)f(t) dt

∣

∣

∣
≤

∫

1

0
|k(s, t)||f(t)| dt ≤

M
∫

1

0
|f(t)| dt ≤ M max |f(t)|, so ‖K‖ ≤ M (here we use the sup norm).

Theorem 9.9. The operator K given in Example 9.8 if compact.
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