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9.5. Compact Self Adjoint Operators on Hilbert Spaces

Note. In this section we give a spectral theorem for a compact self adjoint operator

on a Hilbert space.

Note. Of course R
n and C

n are Hilbert spaces. We know that every linear trans-

formation T from R
n to R

n (or C
n to C

n) is represented by an n×n matrix, AT (see

my class notes for Linear Algebra [MATH 2010], Section 2.3, the “Standard Matrix

Representation of Linear Transformations”: http://faculty.etsu.edu/gardnerr

/2010/c2s3.pdf). A real symmetric matrix is (real) diagonalizable if it is symmet-

ric (see the “Fundamental Theorem of Real Symmetric Matrices”: http://faculty.

etsu.edu/gardnerr/2010/c6s3.pdf). A complex matrix is diagonalizable if it is

conjugate symmetric (that is, aij = aji). As observed in Section 4.6 (see the class

notes for this section, page 3) these matrices correspond to self adjoint operators

on finite dimensional spaces. We now turn to infinite dimensional spaces.

Definition. A subspace M of a linear space is invariant under linear operator T

if TM ⊂ M .

Proposition 9.17. If M is invariant for compact, self adjoint operator T on a

Hilbert space then M⊥ is invariant for T . Moreover, the restrictions of T to both

M and M⊥ are also self adjoint.
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Theorem 9.18. Spectral Theorem for Compact, Self Adjoint Operators.

Let T be a compact, self adjoint operator on a Hilbert space H. There is a sequence

(either finite or countably infinite) of mutually orthogonal closed subspaces (Mn)

whose closed linear span is all of H. There is a corresponding sequence (λn) of real

numbers which if countably infinite converges to 0. For all n and x ∈ Mn, we have

Tx = λnx. Moreover, if λn 6= 0 then Mn is finite dimensional.

Note. Theorem 9.18 also holds for normal operators (though the eigenvalues may

not be real). This is to be proved in Exercise 9.11.

Theorem 9.19. For T a compact, self adjoint operator on Hilbert space H,

T =
∑

n λnEλn
in which Eλn

is the projection onto Mn where Mn is the eigenspace

associated with λn.

Note. Suppose H is an infinite dimensional separable Hilbert space and let T be a

compact, self adjoint operator on H. Then there is a sequence (λn) of eigenvalues

of T and eigenspaces Mn such that H is the closed linear span of the Mn’s by

Theorem 9.18. Let Bn be an orthonormal basis for eigenspace Mn (so each Bn is

finite, unless 0 is an eigenvalue in which case the eigenspace N(T ) need not be

finite dimensional according to Theorem 9.18). Take the union of all these bases,

say B = {ek | k ∈ N} = ∪nBn. Let µk be the eigenvalue corresponding to the

eigenvector ek (this yields sequence (µk)
∞
k=1

with µk’s repeated according to the

dimension of the corresponding eigenspace). We know from Theorem 9.19 that
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T =
∑

k λkEλk
; here we have λk = µk and Eλk

(x) = 〈x, ek〉ek (technically, in

Theorem 9.19, Eλk
is the projection onto Mk and we need to sum over all ek in the

basis for Mk to get such an Eλk
, but we ultimately take such a sum, as follows).

So Tx =
∑

k µk〈x, ek〉ek.

Definition. An operator S on a Hilbert space K (so S : K → K) is unilaterily

equivalent to an operator T on Hilbert space H (so T : H → H) if there is a

bijective isometry U : K → H such that S = U−1TU .

Note. We have the mappings:

Theorem 9.20. A compact, self adjoint operator T on a separable Hilbert space

is unitarily equivalent to a multiplication operator Mf on `2.

Note. Since `2 is a relatively conceptually tangible Hilbert space and multiplication

operators are also tangible, then Theorem 9.20 gives a nice way to think about

compact, self adjoint operators (on separable Hilbert spaces).
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