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Chapter 5. Vector Spaces, Hilbert

Spaces, and the L2 Space

5.1. Groups, Fields, and Vector Spaces

Note. In this section, we set the stage for exploring Hilbert spaces by reviewing

some material from Linear Algebra, including some new ideas about bases.

Definition 5.1.1. A group is a set of elements G along with a mapping (called a

binary operation) ? : G×G → G such that

(1) There exists an element e ∈ G such that for all g ∈ G, e ? g = g ? e = g. This

element e is called the identity element of group G.

(2) For any element g ∈ G there exists a unique element h ∈ G such that g ? h =

h ? g = e. Element h is the inverse of g and is denoted h = g−1.

(3) For all g, h, j ∈ G, g ? (h ? j) = (g ? h) ? j. That is, ? is associative.

We denote the group as 〈G, ?〉. If, in addition, for all g, h ∈ G, g ? h = h ? g then

G is an Abelian (or commutative) group. A subgroup of group 〈G, ?〉 is a subset S

of G which is a group under ?.

Example 5.1.1. Some additive groups are 〈Zn, +〉. 〈Z, +〉, 〈Q, +〉, 〈R, +〉, 〈C, +〉,

〈Rn, +〉, and 〈Cn, +〉,



5.1. Groups, Fields, and Vector Spaces 2

Definition 5.1.2. A field is a set of elements F along with two mappings, called

addition, denoted +, and multiplication, denoted ·, where + : F × F → F and

· : F × F → F, such that 〈F, +〉 is an Abelian group with identity element 0 and

〈F \ {0}, ·〉 is an Abelian group. The identity element of 〈F \ {0}, ·〉 is denoted by 1

and called unity. We denote the field as 〈F, +, ·〉. A subfield of 〈F, +, ·〉 is a subset

S of F such that 〈S, +, ·〉 is a field.

Example 5.1.2. Some fields are 〈Zp, +, ·〉 where p is prime, 〈Q, +, ·〉, 〈R, +, ·〉,

and 〈C, +, ·〉.

Definition 5.1.3. A vector space over field F (the elements of which are called

scalars) is a set V of elements called vectors such that

(a) A mapping called addition, denoted +, is defined such that + : V × V → V

and 〈V, +〉 is an Abelian group. The identity element of this group is denoted 0.

There is a mapping from F×V :→ V called scalar multiplication. Such that for

all a, b ∈ F and for all u,v ∈ V :

(b) a(u+v) = au+av (distribution of scalar multiplication over vector addition),

(c) (a + b)v = av + bv (distribution of scalar multiplication over scalar addition),

(d) a(bv) = (a · b)v (associativity of scalar multiplication),

(e) 1v = v, and

(f) 0v = 0.
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Example 5.1.3. Some vector spaces are:

(a) Qn = 〈V, Q〉 where V = {(q1, q2, . . . , qn) | qi ∈ Q for 1 ≤ i ≤ n}, and scalar

multiplication and vector addition are defined componentwise.

(b) Rn = 〈V, R〉 where V = {(r1, r2, . . . , rn) | ri ∈ R for 1 ≤ i ≤ n}, and scalar

multiplication and vector addition are defined componentwise.

(c) Cn = 〈V, C〉 where V = {(c1, c2, . . . , cn) | ci ∈ C for 1 ≤ i ≤ n}, and scalar

multiplication and vector addition are defined componentwise.

(d) Fn = 〈V, F〉 where V = {(f1, f2, . . . , fn) | fi ∈ F for 1 ≤ i ≤ n}, and scalar

multiplication and vector addition are defined componentwise.

(e) `2(R) = 〈V, R〉 where V =

{
(r1, r2, r3, . . .) | ri ∈ R for i ≥ 1 and

∞∑
i=1

r2
i < ∞

}
,

and scalar multiplication and vector addition are defined componentwise.

(f) `2(C) = 〈V, C〉 where V =

{
(c1, c2, c3, . . .) | ci ∈ C for i ≥ 1 and

∞∑
i=1

|ci|2 < ∞

}
,

and scalar multiplication and vector addition are defined componentwise.

Definition 5.1.4. Suppose 〈V, F〉 is a vector space. A linear combination of vectors

v1,v2, . . . ,vn ∈ V is a sum of the form f1v1+f2v2+· · ·+fnvn where f1, f2, . . . , fn ∈

F are scalars. A set of vectors {v1,v2, . . . ,vn} is linearly independent if f1v1 +

f2v2 + · · · + fnvn = 0 only when f1 = f2 = · · · = fn = 0. The span of a set of

vectors {v1,v2, . . . ,vn} ⊂ V is the set of all linear combinations of the vectors:

span{v1,v2, . . . ,vn} = {f1v1 + f2v2 + · · · + fnvn | f1, f2, . . . , fn ∈ F}. A basis for

a vector space is a linearly independent spanning set of the vector space. A vector

space is finite dimensional if it has a basis of finite cardinality.
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Lemma 5.1.1. Consider the homogeneous system of equations

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

... . . . ...

am1x1 + am2x2 + · · · + amnxn = 0

with coefficients aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) and unknowns xk (1 ≤ k ≤ n) from

field F. If n > m then the system has a nontrivial solution (that is, a solution

x1, x2, . . . , xn where xk 6= 0 for some 1 ≤ k ≤ n).

Note. Lemma 5.1.1 is familiar from Linear Algebra where is it proved for F = R.

Notice the proof given in the chapter is for any field F.

Theorem 5.1.1. Let 〈V, F〉 be a vector space with bases {v1,v2, . . . , vm} and

{w1,w2, . . . ,wn}. Then n = m.

Definition 5.1.5. If vector space 〈V, F〉 is a finite dimensional vector space, then

the dimension of the vector space is the cardinality of a basis.

Definition 5.1.6. Two vector spaces over the same field F, 〈V, F〉 and 〈W, F〉, are

isomorphic if there is a one-to-one and onto mapping ϕ : V → W such that for all

f, f ′ ∈ F and v,v′ ∈ V , we have: ϕ(fv + f ′v′) = fϕ(v) + f ′ϕ(v′).
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Note. We are now prepared to completely classify finite dimensional vector spaces.

The following result gives us the answer to the question “What does a finite di-

mensional vector space look like?” More precisely, this result tells us, up to isomor-

phism, what an n-dimensional vector space is. We raise this result to the status

of a “fundamental theorem” and declare it the Fundamental Theorem of Finite

Dimensional Vector Spaces.

Theorem 5.1.2. The Fundamental Theorem of Finite Dimensional Vector

Spaces.

If 〈V, F〉 is an n-dimensional vector space, then 〈V, F〉 is isomorphic to Fn = 〈V ∗, F〉

where V ∗ = {(f1, f2, . . . , fn) | f1, f2, . . . , fn ∈ F}, and scalar multiplication and

vector addition are defined componentwise.

Note. Now that we know what an n-dimensional vector space “looks like,” we use

the Fundamental Theorem of Finite Dimensional Vector Spaces to classify certain

transformations of these vector spaces.

Definition 5.1.7. A transformation T mapping one vector space 〈V, F〉 into an-

other 〈W, F〉 is a linear transformation if for all v,v′ ∈ V and for all f, f ′ ∈ F, we

have T (fv + f ′v′) = fT (v) + f ′T (v′).
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Definition. The standard basis of Fn: {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0,

. . . , 0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}. We commonly represent the set of standard

basis vectors as {e1, e2, . . . , en}. If v ∈ Fn and v = v1e1 + v2e2 + · · · + vnen, then

we represent v as (v1, v2, . . . , vn).

Theorem 5.1.3. If T is a linear transformation from n-dimensional vector space

〈V, F〉 to m-dimensional vector space 〈W, F〉 then T is equivalent to the action of

an m× n matrix AT : Fn → Fm.

Note. Since finite dimensional vector spaces are totally classified, we now turn

our attention to infinite dimensional vector spaces. In this study, we modify some

of the above definitions (basis, span, and linear combination). But first, if we keep

the above definitions and still define a basis as a linearly independent spanning set

(where all linear combinations are finite) then such a basis is called a Hamel basis.

We will show that every vector space has a Hamel basis, but the argument requires

an equivalent of the Axiom of Choice called Zorn’s Lemma.

Definition. For set X, any subset of X ×X is a binary relation on X. A relation

R on X is reflexive if for all x ∈ X, (x, x) ∈ R. R is symmetric if (x, y) ∈ R implies

(y, x) ∈ R. R is transitive if (x, y), (y, z) ∈ R implies (x, z) ∈ R.
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Definition 1.2.3. A relation R on X is an equivalence relation if it is reflexive,

symmetric, and transitive. A relation is antisymmetric if (x, y) ∈ R and (y, x) ∈ R

implies that x = y. A relation is a partial ordering if it is reflexive, antisymmetric

and transitive, and is denoted ≤. R is a total ordering if R is a partial ordering

and for any x, y ∈ X, either x ≤ y or y ≤ x.

Definition. If set X is partially ordered by ≤, a maximal (or minimal) element of

X is x ∈ X such that x ≤ y (or y ≤ x) implies y = x. If E ⊂ X, an upper bound

for E is an element x ∈ X such that y ≤ x for all y ∈ E.

Note. The following result is equivalent to the Axiom of Choice.

Zorn’s Lemma. If X is a partially ordered set and every totally ordered subset

of X has an upper bound, then X has a maximal element.

Theorem 5.1.4. Let 〈V, F〉 be a vector space. Then there exists a set of vectors

B ⊂ V such that (1) B is linearly independent and (2) for any v ∈ V there exists

finite sets {b1,b2, . . . ,bn} ⊂ B and {f1, f2, . . . , fn} such that v = f1b1 + f2b2 +

· · ·+ fnbn. That is, B is a Hamel basis for 〈V, F〉.
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Note. An interesting result concerning Hamel bases for a given vector space is the

following:

Exercise 5.1.3. If B1 and B2 are Hamel bases for a given infinite dimensional

vector space, then B1 and B2 are of the same cardinality.

We need two results from set theory. From Hungerford’s Algebra (1974) page 17:

Theorem 0.8.6. The Schroeder-Bernstein Theorem. If A and B are sets

such that |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

From Hungerford’s Algebra (1974) page 22:

Exercise 0.8.11. If J is an infinite set, and for each i ∈ J set Ai is a finite set,

then | ∪j∈J Aj| ≤ |J |.

Note. We are new ready for a proof of Exercise 5.1.3.

Note. Since the proof of Theorem 5.1.4 requires Zorn’s Lemma, this means that it

is not practical to actually FIND a Hamel basis for an infinite dimensional vector

space.

Note. We now modify some of the definitions we were using and, generally, replace

the idea of “finite linear combination” with “series.” But by passing to the infinite

requires us to discuss limits of partial sums and hence we need a metric (or at least

a topology—see Royden’s Real Analysis, 3rd Edition, Section 10.5 “Topological

Vector Spaces”).
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Definition 5.1.8. Let 〈V, F〉 be a vector space with metric m. Then a countable

set of vectors B ⊂ V is a Schauder basis for 〈V, F〉 if for each v ∈ V there is a

unique ordered set of scalars {f1, f2, . . .} ⊂ F such that v =
∑∞

n=1 fnbn. That is,

limn→∞ m (v,
∑n

i=1 fibi) = 0.

Note. The uniqueness requirement insures the set B is “linearly independent” in

the sense that 0 =
∑∞

n=1 fnbn if and only if fn = 0 for all n ∈ N.

Note. Juliusz P. Schauder was born in what is today the Ukraine, but at the

time was Poland. He was drafted into the Austro-Hungarian army after finishing

high school in 1917. He was taken prisoner in Italy. After the first world war

he entered Jan Kasimerz University and earned his doctorate in 1923. Others

had studied bases of infinite dimensional spaces, but Schauder gave his definition

in “Zur Theorie stetiger Abbildungen in Funktionalraumen” (On the Theory of

Continuous Maps in Functional Spaces), Mathematische Zeitschrift, 26 (1927), 47-

65. Schauder studied topology and functional analysis. He was Jewish and died at

the hands of the Nazis in 1943. This information (and the photo below) are from

the MacTutor History of Mathematics Archive biography of Schauder.

Juliusz P. Schauder (1899–1943)
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