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5.2. Inner Product Spaces

Note. In this section, we introduce an inner product on a vector space. This will

allow us to bring much of the geometry of Rn into the infinite dimensional setting.

Definition 5.2.1. A vector space with complex scalars 〈V, C〉 is an inner product

space (also called a Euclidean Space or a Pre-Hilbert Space) if there is a function

〈·, ·〉 : V × V → C such that for all u,v,w ∈ V and a ∈ C we have:

(a) 〈v,v〉 ∈ R and 〈v,v〉 ≥ 0 with 〈v,v〉 = 0 if and only if v = 0,

(b) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉,

(c) 〈u, av〉 = a〈u,v〉, and

(d) 〈u,v〉 = 〈v,u〉 where the overline represents the operation of complex conju-

gation.

The function 〈·, ·〉 is called an inner product.

Note. Notice that properties (b), (c), and (d) of Definition 5.2.1 combine to imply

that

〈u, av + bw〉 = a〈u,v〉+ b〈u,w〉

and

〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉

for all relevant vectors and scalars. That is, 〈·, ·〉 is linear in the second positions

and “conjugate-linear” in the first position.
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Note. We can also define an inner product on a vector space with real scalars by

requiring that 〈·, ·〉 : V × V → R and by replacing property (d) in Definition 5.2.1

with the requirement that the inner product is symmetric: 〈u,v〉 = 〈v,u〉. Then

Rn with the usual dot product is an example of a real inner product space.

Example 5.2.1. The vector space Cn is an inner product space with the in-

ner product defined for u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) as 〈u,v〉 =
n∑

j=1

ujvj.

Definition 5.2.2. For inner product space 〈V, C〉 with inner product 〈·, ·〉 , define

the norm induced by the inner product as ‖v‖ = 〈v,v〉1/2 for all v ∈ V.

Note. For all a ∈ F and vectors v we have that ‖av‖ = |a|‖v‖.

Theorem 5.2.1. Schwarz’s Inequality.

For all u,v in inner product space 〈V, C〉, we have

|〈u,v〉| ≤ ‖u‖‖v‖.

Note. As in Linear Algebra, we use the Schwarz Inequality to prove that ‖ · ‖

satisfies the Triangle Inequality.
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Theorem 5.2.2. The Triangle Inequality.

For all u,v in an inner product space 〈V, C〉 we have ‖u + v‖ ≤ ‖u‖+ ‖v‖.

Note. We now see that ‖ · ‖ in fact does satisfy the definition of a norm.

Note. Schematically we have:

(vector spaces) ⊃ (normed vector spaces) ⊃ (inner product spaces).

Definition 5.2.3. Two vectors u,v in an inner product space are orthogonal if

〈u,v〉 = 0. A set of vectors {v1,v2, . . .} is orthogonal if 〈vi,vj〉 = 0 for i 6= j. This

orthogonal set of vectors is orthonormal if in addition 〈vi,vi〉 = ‖vi‖2 = 1 for all i

and, in this case, the vectors are said to be normalized.

Theorem 5.2.3. The Pythagorean Theorem.

Let {v1,v2, . . . , vn} be an orthonormal set of vectors in an inner product space

〈V, C〉. Then for all u ∈ V

‖u‖2 =
n∑

j=1

|〈u,vj〉|2 +

∥∥∥∥∥u−
n∑

j=1

〈vj,u〉vj

∥∥∥∥∥
2

.

Note. If we have v and w orthogonal and set u = v + w then the Pythagorean

Theorem implies the familiar result that ‖u‖2 = ‖v‖2 + ‖w‖2.
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Note. Since the Pythagorean Theorem holds in inner product spaces, then these

spaces must be Euclidean (“flat”). This is because the metric induced by the inner

product is the Euclidean metric.

Corollary 5.2.1. Bessel’s Inequality.

Let {v1,v2, . . . ,vn} be an orthonormal set in an inner product space 〈V, C〉. Then

for all u ∈ V we have

‖u‖2 ≥
n∑

j=1

|〈u,vj〉|2.

Note. Explicitly, we have the metric d : V ×V → R defined as d(u,v) = ‖u−v‖.

Therefore we can define Cauchy sequences and limits in an inner product space.

Definition 5.2.5. An inner product space is complete if Cauchy sequences con-

verge.

Definition 5.2.6. A complete inner product space is a Hilbert space.

Note. Hilbert spaces are special cases of Banach spaces.

Example 5.2.2. Since R and C are complete, then Rn and Cn are examples

of Hilbert spaces (with the familiar dot product as the inner product on R and

the inner product on Cn as defined in Example 5.2.1). However, we are quite
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familiar with the structure of Rn and Cn from our studies of linear algebra. In

fact, every real vector space of dimension n is isomorphic to Rn and every complex

vector space of dimension n is isomorphic to Cn (by the Fundamental Theorem of

Finite Dimensional Vector Spaces). So we will next turn our attention to infinite

dimensional vector spaces which are also Hilbert spaces.
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