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5.4. Projections and Hilbert Space Isomorphisms

Note. In this section, we drag many of the geometric properties of R” into ¢? and
show that every infinite dimensional Hilbert space (with some additional restric-

tions) is isomorphic to £2.

Definition. In an inner product space we define the projection of f onto nonzero

(f.9)
(9,9)

H, we say that h € H is orthogonal to S if (h,s) =0 for all s € S. The orthogonal

g in a Hilbert space as proj,(f) = g. For a nonempty set S in a Hilbert space

complement of S is
St={heH|(hs)=0forallscS}.

(St is pronounced “S perp” and St is sometimes called the “perp space” of S.)

In fact, S* is itself a Hilbert space:

Theorem 5.4.1. For any nonempty set S in a Hilbert space H, the set S* is a
Hilbert space.

Note. We now use the idea of an orthogonal complement to decompose a Hilbert
space into subspaces. As we will see, the decomposition is an algebraic and not a

set theoretic decomposition (it will involve vector addition as opposed to set union).

Theorem 5.4.2. Let S be a subspace of a Hilbert space H (that is, the set of
vectors in S is a subset of the set of vectors in H and S itself is a Hilbert space).

Then for any h € H, there exists a unique t € S such that ing Ilh —s|| = ||h —t||.
se
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Note. We now use Theorem 5.4.2 to uniquely decompose elements of H into a

sum of an element of S and an element of S+.

Theorem 5.4.3. Let S be a subspace of a Hilbert space H. Then for all h € H,

there exists a unique decomposition of the form h = s+s’ where s € S and s’ € S*.

Definition. For h € H, a Hilbert space, the vector s € S described in Theorem
5.4.3 is the projection of vector h € H onto subspace S, denoted projg(h) = s. We
also say that H can be written as the direct sum of S and S+, denoted H = S@ S+,

and that H has this as an (orthogonal) decomposition.

Definition. In a Hilbert space, a set of nonzero vectors is orthogonal if the vectors
are pairwise orthogonal and if, in addition, each vector is a unit vector then the set

is an orthonormal set.

Definition 5.4.1. A Schauder basis of a Hilbert space which is also an orthonormal

set is called an orthonormal basis or a Riesz basis.

Note. The following result is a simple consequence of the Gram-Schmidt process.

Theorem 5.4.4. A Hilbert space with a Schauder basis has an orthonormal basis.
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Theorem 5.4.5. If R = {ry,rs,...} is an orthonormal basis for a Hilbert space H
and if h € H, then

h = <h, Tk>Tk.
k=1

Theorem 5.4.6. If R = {ry,79,...} is an orthonormal basis for a Hilbert space
H, let Ry = span{ry,ry,...,7,—1} and let h € H. Then infycp, [|h — s|| = ||h — ¢
where t = Zﬁj(h, rn)7y. That is, the best approximation of h is given by partial

sums of the orthonormal series of h (i.e., t = projg, (h)).

Note. The next result follows easily from the fact that the inner product is con-

tinuous (by Exercise 5.2.6) and the definition of orthonormal.

Theorem 5.4.7. If R = {r,rq,...} is an orthonormal basis for a Hilbert space
H and for h € H we have h = Y22 (h, 7)1, then ||R||*> = 727, |ax|* where
ap = <h,Tk>.

Definition 5.4.2. A Hilbert space with a countable dense subset is separable.
That is, a separable Hilbert space H has a subset D = {d;,ds, ...} such that for
any h € H and for all € > 0, there exists d € D with ||h — di|| < €. Therefore the

(topological) closure of D is H.

Note. Many texts study separable Hilbert spaces. We are interested in Hilbert

spaces with Schauder bases. The following shows that these are equivalent.
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Theorem 5.4.8. A Hilbert space with scalar field R or C is separable if and only

if it has a countable orthonormal basis.

Definition 5.4.3. Let H; and H, be Hilbert spaces. If there exists a one-to-one
and onto linear mapping m : H; — Hs such that inner products are preserved:
(h,h") = (w(h), n(h')) for all h,h’ € Hy, then 7 is a Hilbert space isomorphism and

H, and H, are isomorphic.

Note. We are now ready to extend the Fundamental Theorem of Finite Dimen-

sional Vector Spaces to the infinite dimensional case.

Theorem 5.4.9. Fundamental Theorem of Infinite Dimensional Vector
Spaces.
Let H be a Hilbert space with a countable infinite orthonormal basis. Then H is

isomorphic to £2.

Note. The Fundamental Theorem of Infinite Dimensional Vector Spaces states
that all Hilbert spaces with a countable infinite orthonormal basis are isomorphic,
since they are all isomorphic to £2. So the answer to the big question “What does

an infinite dimensional vector space look like?,” is “¢?!”
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Note. Finally, we show that linear transformations from one infinite dimensional
Hilbert space to another are represented by matrices (well, infinite matrices) just

like linear transformations from R" to R™.

Theorem 5.4.10. If T : Hy — H, is a linear transformation where H; and H»
are Hilbert spaces (over the same field) with countable infinite bases, then T is

equivalent to the action of an infinite matrix (A4;;); jen-

Note 5.4.A. So we now see that many of the properties of R" carry over to the
infinite dimensional space ¢2. Though we don’t usually speak of vectors in Hilbert
spaces as having magnitude and direction, there is still some validity to this idea.
Just as there are n “fundamental directions” (1,0,0,...,0), (0,1,0,...,0),...,
(0,0,0,...,0,1) in R™ (the “fundamental” property being given by the fact that
every “direction” [i.e., nonzero vector] is a linear combination of these “directions”
[i.e., basis vectors]), there are a countable number of “fundamental directions” in a

Hilbert space with an orthonormal basis. This is a particularly tangible idea when

we consider the Hilbert space
o0
Z lax|* < 00, a; € R}

EQ = {(al, as, . . )
k=1
with orthonormal basis R = {(1,0,0,...),(0,1,0,...),(0,0,1,0,...), ...}.

Note 5.4.B. Consider the set R = {(1,0,0,...),(0,1,0,...),(0,0,1,0,...), ...} as
a subset of £2. This set is closed (since any two elements of R are a distance V2 apart

and so R consists of isolated points) and bounded (each element is distance 1 from
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the origin [i.e., the vector 0]). However, if we take the open covering of R with balls
centered on the elements of R with radius 1/2, then we see that there is no subcover.
Therefore R is not compact. So we have violated the Heine-Borel Theorem (well,
Heine-Borel only claims to hold in finite dimensions)! See the illustration below. In
addition, R is an infinite bounded set without a limit point (in apparent violation
of Weierstrass’s Theorem). In the proof of Weierstrass’s Theorem, the finite set is
cut in half a countable number of times to produce a limit point. However, in an
infinite dimensional space there are so many “directions” that we can create the
set R which is infinite and bounded, but the points do not cluster because we have

taken advantage of the many directions.
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A closed and bounded set in ¢? that is not compact;

only the first three axes of the countably infinite number of axes is shown.
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