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5.4. Projections and Hilbert Space Isomorphisms

Note. In this section, we drag many of the geometric properties of Rn into `2 and

show that every infinite dimensional Hilbert space (with some additional restric-

tions) is isomorphic to `2.

Definition. In an inner product space we define the projection of f onto nonzero

g in a Hilbert space as projg(f) =
〈f, g〉
〈g, g〉

g. For a nonempty set S in a Hilbert space

H, we say that h ∈ H is orthogonal to S if 〈h, s〉 = 0 for all s ∈ S. The orthogonal

complement of S is

S⊥ = {h ∈ H | 〈h, s〉 = 0 for all s ∈ S} .

(S⊥ is pronounced “S perp” and S⊥ is sometimes called the “perp space” of S.)

In fact, S⊥ is itself a Hilbert space:

Theorem 5.4.1. For any nonempty set S in a Hilbert space H, the set S⊥ is a

Hilbert space.

Note. We now use the idea of an orthogonal complement to decompose a Hilbert

space into subspaces. As we will see, the decomposition is an algebraic and not a

set theoretic decomposition (it will involve vector addition as opposed to set union).

Theorem 5.4.2. Let S be a subspace of a Hilbert space H (that is, the set of

vectors in S is a subset of the set of vectors in H and S itself is a Hilbert space).

Then for any h ∈ H, there exists a unique t ∈ S such that inf
s∈S

‖h− s‖ = ‖h− t‖.
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Note. We now use Theorem 5.4.2 to uniquely decompose elements of H into a

sum of an element of S and an element of S⊥.

Theorem 5.4.3. Let S be a subspace of a Hilbert space H. Then for all h ∈ H,

there exists a unique decomposition of the form h = s+s′ where s ∈ S and s′ ∈ S⊥.

Definition. For h ∈ H, a Hilbert space, the vector s ∈ S described in Theorem

5.4.3 is the projection of vector h ∈ H onto subspace S, denoted projS(h) = s. We

also say that H can be written as the direct sum of S and S⊥, denoted H = S⊕S⊥,

and that H has this as an (orthogonal) decomposition.

Definition. In a Hilbert space, a set of nonzero vectors is orthogonal if the vectors

are pairwise orthogonal and if, in addition, each vector is a unit vector then the set

is an orthonormal set.

Definition 5.4.1. A Schauder basis of a Hilbert space which is also an orthonormal

set is called an orthonormal basis or a Riesz basis.

Note. The following result is a simple consequence of the Gram-Schmidt process.

Theorem 5.4.4. A Hilbert space with a Schauder basis has an orthonormal basis.
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Theorem 5.4.5. If R = {r1, r2, . . .} is an orthonormal basis for a Hilbert space H

and if h ∈ H, then

h =
∞∑

k=1

〈h, rk〉rk.

Theorem 5.4.6. If R = {r1, r2, . . .} is an orthonormal basis for a Hilbert space

H, let Rk = span{r1, r2, . . . , rk−1} and let h ∈ H. Then infs∈Rk
‖h − s‖ = ‖h − t‖

where t =
∑k−1

n=1〈h, rn〉rn. That is, the best approximation of h is given by partial

sums of the orthonormal series of h (i.e., t = projRk
(h)).

Note. The next result follows easily from the fact that the inner product is con-

tinuous (by Exercise 5.2.6) and the definition of orthonormal.

Theorem 5.4.7. If R = {r1, r2, . . .} is an orthonormal basis for a Hilbert space

H and for h ∈ H we have h =
∑∞

k=1〈h, rk〉rk, then ‖h‖2 =
∑∞

k=1 |ak|2 where

ak = 〈h, rk〉.

Definition 5.4.2. A Hilbert space with a countable dense subset is separable.

That is, a separable Hilbert space H has a subset D = {d1, d2, . . .} such that for

any h ∈ H and for all ε > 0, there exists dk ∈ D with ‖h− dk‖ < ε. Therefore the

(topological) closure of D is H.

Note. Many texts study separable Hilbert spaces. We are interested in Hilbert

spaces with Schauder bases. The following shows that these are equivalent.
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Theorem 5.4.8. A Hilbert space with scalar field R or C is separable if and only

if it has a countable orthonormal basis.

Definition 5.4.3. Let H1 and H2 be Hilbert spaces. If there exists a one-to-one

and onto linear mapping π : H1 → H2 such that inner products are preserved:

〈h, h′〉 = 〈π(h), π(h′)〉 for all h, h′ ∈ H1, then π is a Hilbert space isomorphism and

H1 and H2 are isomorphic.

Note. We are now ready to extend the Fundamental Theorem of Finite Dimen-

sional Vector Spaces to the infinite dimensional case.

Theorem 5.4.9. Fundamental Theorem of Infinite Dimensional Vector

Spaces.

Let H be a Hilbert space with a countable infinite orthonormal basis. Then H is

isomorphic to `2.

Note. The Fundamental Theorem of Infinite Dimensional Vector Spaces states

that all Hilbert spaces with a countable infinite orthonormal basis are isomorphic,

since they are all isomorphic to `2. So the answer to the big question “What does

an infinite dimensional vector space look like?,” is “`2!”



5.4. Projections and Hilbert Space Isomorphisms 5

Note. Finally, we show that linear transformations from one infinite dimensional

Hilbert space to another are represented by matrices (well, infinite matrices) just

like linear transformations from Rn to Rm.

Theorem 5.4.10. If T : H1 → H2 is a linear transformation where H1 and H2

are Hilbert spaces (over the same field) with countable infinite bases, then T is

equivalent to the action of an infinite matrix (Aij)i,j∈N.

Note 5.4.A. So we now see that many of the properties of Rn carry over to the

infinite dimensional space `2. Though we don’t usually speak of vectors in Hilbert

spaces as having magnitude and direction, there is still some validity to this idea.

Just as there are n “fundamental directions” (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,

(0, 0, 0, . . . , 0, 1) in Rn (the “fundamental” property being given by the fact that

every “direction” [i.e., nonzero vector] is a linear combination of these “directions”

[i.e., basis vectors]), there are a countable number of “fundamental directions” in a

Hilbert space with an orthonormal basis. This is a particularly tangible idea when

we consider the Hilbert space

`2 =

{
(a1, a2, . . .)

∣∣∣∣∣
∞∑

k=1

|ak|2 < ∞, ak ∈ R

}
with orthonormal basis R = {(1, 0, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, 0, . . .), . . .}.

Note 5.4.B. Consider the set R = {(1, 0, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, 0, . . .), . . .} as

a subset of `2. This set is closed (since any two elements of R are a distance
√

2 apart

and so R consists of isolated points) and bounded (each element is distance 1 from
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the origin [i.e., the vector 0]). However, if we take the open covering of R with balls

centered on the elements of R with radius 1/2, then we see that there is no subcover.

Therefore R is not compact. So we have violated the Heine-Borel Theorem (well,

Heine-Borel only claims to hold in finite dimensions)! See the illustration below. In

addition, R is an infinite bounded set without a limit point (in apparent violation

of Weierstrass’s Theorem). In the proof of Weierstrass’s Theorem, the finite set is

cut in half a countable number of times to produce a limit point. However, in an

infinite dimensional space there are so many “directions” that we can create the

set R which is infinite and bounded, but the points do not cluster because we have

taken advantage of the many directions.

A closed and bounded set in `2 that is not compact;

only the first three axes of the countably infinite number of axes is shown.
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