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Proof of Theorem 4.22

Note. In Promislow’s proof of Theorem 4.22, it is established that (see page 87)

ψz(x) = 〈x, z〉 =

〈

x−
f(x)

f(z0)
z0, z

〉

+
f(x)

f(z0)
〈z0, z〉

where z = f(z0)z0. It is then stated that: “The second term on the far right is

equal to f(x).” However, this term in fact reduces to

f(x)

f(z0)
〈z0, z〉 =

f(x)

f(z0)
〈z0, f(z0)z0〉 =

(

f(z0)
)

f(z0)
f(x).

Of course if the scalar field is R, then this is fine. However, we are not making this

assumption.

Note. This handout gives a proof of Theorem 4.22 based in part on the argument

given in Lokenath Debnath and Piotr Mikusiński’s Introduction to Hilbert Spaces

with Applications, 3rd Edition, Elsevier Press (2005). See pages 133 and 134.

Lemma. Let H be a Hilbert space and f ∈ H∗ where f 6= 0. Then the dimension

of N(f)⊥ is 1.

Proof. Since f 6= 0, then N(f) 6= H. Since f is bounded, then f is continuous

(Theorem 2.6), N(f) = f−1({0}), and so N(f) is closed (and “clearly” a subspace).

So N(f) is a closed proper subspace of H. Hence N(f)⊥ contains nonzero elements

of H. Let h1, h2 ∈ N(f)⊥. Since f(h1) 6= 0 and f(h2) 6= 0, then there exists some
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scalar a 6= 0 such that

f(h1) + af(h2) = f(h1 + ah2) = 0

(namely, a = −f(h1)/f(h2)). But then h1 + ah2 ∈ N(f). But N(f)⊥ is a linear

space, so h1 + ah2 ∈ N(f)⊥. So, by Theorem 4.14a, h1 + ah2 = 0. But then h1 and

h2 are linearly dependent. So any two elements of N(f)⊥ are linearly dependent

and the dimension of N(f)⊥ is 1.

Theorem 4.22. For any z in a Hilbert space H, the functional ψz defined by

ψz(x) = 〈x, z〉 is in H∗ = B(H,F). Conversely, given any f ∈ H∗, there is a unique

z ∈ H such that f = ψz.

Proof. Since 〈·, ·〉 is linear in the first position (by definition), then ψz is linear.

By the Cauchy-Schwartz Inequality (Theorem 4.3) ‖ψz(x)‖ = ‖〈x, z〉‖ ≤ ‖x‖‖z‖,

so ‖ψz‖ ≤ ‖z‖ (taking a supremum over all unit vectors x). With z 6= 0 and

x = z/‖z‖ we have

ψz(x) = 〈z/‖z‖, z〉 = ‖z‖2/‖z‖ = ‖z‖.

So ‖ψz‖ = ‖z‖. Therefore ψz is bounded and so ψz ∈ H∗ for all z ∈ H.

By Lemma, there is a unit vector z0 ∈ N(f)⊥. In fact, N(f)⊥ = span{z0}. Then

for all x ∈ H, we have

x = x− 〈x, z0〉z0 + 〈x, z0〉z0. (∗)

Now since N(f)⊥ is one dimensional and z0 is a unit vector, then PN(f)⊥(x) =

〈x, z0〉z0. By Theorem 4.14(b), for any x ∈ H we have

x = PN(f)(x) + PN(f)⊥(x) = PN(f)(x) + 〈x, z0〉z0.
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Therefore, x− 〈x, z0〉z0 = PN(f) and x− 〈x, z0〉z0 ∈ N(f), or f(x− 〈x, z0〉z0) = 0.

So from (∗) we have

f(x) = f(x− 〈x, z0〉z0 + 〈x, z0〉z0)

= f(x− 〈x, z0〉z0) + f(〈x, z0〉z0)

= 0 + 〈x, z0〉f(z0)

= 〈x, f(z0)z0〉 (by conjugate linearity).

So with z = f(z0)z0, we have f(x) = 〈x, z〉 = ψz(x) for all x ∈ H. That is, f = ψz.

For uniqueness, suppose f = ψz = ψz′. Then for all x ∈ H, 〈x, z〉 = 〈x, z′〉, or

〈x, z〉 − 〈x, z′〉 = 〈x, z − z′〉 = 0.

So z − z′ ∈ H⊥ = {0}, and z = z′.
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