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[Slide 1]

INTRODUCTION

[Slide 2] Léonard Euler was the most prolific mathematician in history! [Slide

3] William Dunham, author of Euler — The Master of Us All, estimates that

Euler wrote around 25,000 pages of math, physics, and other works [page 176]. An

attempt has been underway since 1911 to publish his collected works under the

title Opera Omnia. Dunham estimates that a printed copy of the final work will

weigh about 300 pounds! [page 51 of The Mathematical Universe]

[Slide 4] Euler made advances in the areas of number theory, calculus, algebra,

geometry, and complex numbers. In addition, he set the foundations for graph

theory and the calculus of variations. [Slide 5] He gave us our modern definition of

“function” and introduced notation which we use today without a second thought:

f(x) for a function, π for 3.14159 · · ·, e for the base of the natural logarithm, i

for the square root of −1, and Σ for summation. He published some of the most

influential textbooks of all times, and one popular level science book.

In this presentation, we give a brief biography of Léonard Euler and discuss

three of his most famous results: (1) the summing of the p-series with p = 2, (2)

the use of infinite products in analytic number theory, and (3) introduction of the

“Euler line” to classical plane geometry.

[Slide 6]

BIOGRAPHY

[Slide 7] [This is based primarily on E.T. Bell’s Men of Mathematics and W.

Dunham’s Euler — The Master of Us All]

[Slide 8] Léonard Euler was born 300 years ago on April 15, 1707 in Basel,

Switzerland. [Slide 9] His father, Paul, had an interest in math and was a pupil

of Jacob Bernoulli. [Slide 10] Paul Euler was a Calvinist pastor in the town

of Riechen, Switzerland, and he intended for his son to follow the same career
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path. Léonard Euler entered the University of Basel in 1721 and studied theology

and Hebrew. [Slide 11] His mathematical ability was quickly noticed by Johann

Bernoulli [Slide 12] who tutored him. He also became friends with Daniel and

Nicolaus Bernoulli, sons of Johann. [Slide 13] He received his master’s degree in

1724. [Slide 14] In 1725, Daniel Bernoulli took a position in Russia’s St. Petersburg

Academy and in 1726 he invited Euler to join him. [Slide 15] Euler arrived in

St. Petersburg in 1727. [Slide 16] He was officially invited as a member of the

medical section. The day Euler arrived in Russia, Catherine I died. [Slide 17] In

the resulting turmoil, Euler switched over to the physics section. For the next six

years, Euler worked away. One reason for his immersion in research was his fear of

the many spies in the oppressive Russian state.[Slide 18] In 1733, Daniel Bernoulli

returned to Switzerland and Euler stepped in as the lead mathematician at the St.

Petersburg Academy. [Slide 19]

At this time, Euler married Catharina Gsell, the daughter of a Swiss painter

who was living in St. Petersburg. [Slide 20] Together, they had 13 children but

only 5 survived to their 20s. [Slide 21] E.T. Bell in Men of Mathematics says that

Euler “would often compose his memoirs with a baby in his lap while the older

children played all about him. The ease with which he wrote the most difficult

mathematics is incredible.” [page 145]

[Slide 22] Euler’s reputation was solidified in 1735 with his solution of the so

called “Basel Problem.” [Slide 23] This is the problem of solving the sum of the

series
∞∑

n=1

1

n2 . It was originally posed in 1644 by Pietro Mengoli and brought to

the attention of the mathematical community by Jacob Bernoulli in 1689. [Slide

24] Euler showed, to the surprise of many, that (quoting from Dunham’s Euler,

pages 45-46): [Slide 25] “Now, however, against all expectation I have found an

elegant expression for the sum of the series 1 + 1
4 + 1

9 + 1
16+ etc., which depends on

the quadrature of the circle. . . I have found that six times the sum of this series is

equal to the square of the circumference of a circle whose diameter is 1.” That is,
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Euler showed that
∞∑

n=1

1

n2 =
π2

6
. Euler then started pouring out papers which were

published in the journal of the St. Petersburg Academy.

In 1736 [Slide 26] he published his text Mechanica. Newton’s Principia Math-

ematica laid the foundation of classical physics and celestial motion. However,

Newton’s arguments were based on geometric arguments (versus analytic ones).

[Slide 27] E.T. Bell comments [page 147] that “Newton’s Principia might have

been written by Archimedes. . . [but in Euler’s Mechanica] for the first time the full

power of the calculus was directed against mechanics and the modern era in that

basic science began.”

[Slide 28] In 1738, things literally got darker for Euler. He started to loose

sight in his right eye, probably the result of a severe infection he had at the time

[Dunham, page xxii]. Nonetheless, Euler’s productivity continued. [Slide 29]

However, he was tiring of the oppressive circumstances in Russia and when, in 1741,

Prussia’s Frederick the Great [Slide 30] invited him to join the Berlin Academy,

he moved his family there. They would remain there for 25 years.

[Slide 31] The Berlin years were as productive as the St. Petersburg years! In

1744 he set the stage for the area of math called the calculus of variations. He

published his text Methodus inveniendi lineas curvas maximi minimive proprietate

gaudentes. [Slide 32] In 1748 he published a two-volume work Introductio in Anal-

ysis Infinitorium (literally, ‘Introduction to the Analysis of the Infinities”). The

infinities the title refers to are: infinite series, infinite products, and continued frac-

tions. The fourth definition in the book is that of function [Slide 33]: “A function

of a variable quantity is an analytic expression composed in any way whatsoever

of the variable quantity and numbers or constant quantities.” [Blanton’s transla-

tion, page 3] The translator refers to the material of this book as “precalculus”

— not in the sense that we might think of precalculus, but in the sense that it

does not deal with derivatives or integrals. It is also in this book that Euler states

eix = cosx + i sin x. Math historian Carl Boyer said of this work [from Durham’s
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Mathematical Universe, page 52] [Slide 34]: “[It] is probably the most influential

textbook of modern times. It is the work which made the function concept basic

to mathematics. It popularized the definition of logarithms as exponents and the

definitions of the trigonometric functions as ratios. It crystallized the distinction

between algebraic and transcendental functions and between elementary and higher

functions. It developed the use of polar coordinates and of the parametric repre-

sentation of curves. Many of our commonplace notations are derived from it. In a

word, the Introductio did for elementary analysis what the Elements of Euclid did

for geometry.”

In 1755 [Slide 35] he published a work entitled Institutiones calculi differentialis

(“Foundations of Differential Calculus”). Some of the chapter titles include: [Slide

36]

• On the Infinite and the Infinitely Small

• On the Differentiation of Functions of Two or More Variables

• On Differential Equations

Now for a few comments about Euler and rigor. First, the analysis done by

Euler was surprisingly. . . intuitive! His work lacks ε/δ (which were introduced by

Cauchy). As we will see, some of his arguments are, by modern standards, mathe-

matically “fishy’ ! [Slide 37] He throws around symbols like

• 1

∞
= 0

• 1 +
1

3
+

1

5
+

1

7
+ · · · = 0.66215 +

1

2
ln(∞)

• 1 − x0

0
= − lnx.

[Slide 38] William Dunham comments (pages 171–72): “[H]is mathematics did not

always display the rigor and precision of today’s, most particularly in his cavalier

use of the infinite. These shortcomings have given ammunition to mathematicians
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who criticize his work as primitive, intuitive, and decidedly pre-modern. They have

a point.” Euler should be viewed as a ground breaking pioneer! It was left to others

to take the rough trail to new territory which Euler cut and clean it up, pave it,

and make it a smooth ride for future traveler’s!

Euler completed one other noteworthy book while in Berlin. He corresponded

with her in over 200 letters on physics, logic, and astronomy. [Slide 39] The letters

were published as “Letters of Euler on Different Subjects in Natural Philosophy

Addressed to a German Princess” This became a popular work and “remains to

this day one of history’s finest examples of popular science.” [Dunham, page xxv]

[Slide 40] However, Frederick the Great for some reason became irate with

Euler, even calling him “my cyclops” in reference to his total loss of sight in his

right eye. [Slide 41] Catherine the Great came to power in Russia, and the political

environment lightened. [Slide 42] In 1766, Euler returned to St. Petersburg, Russia

where he remained for the rest of his life. [Slide 43] During 1768 to 1770 he

published Institutiones calculi integralic in which he addressed integral calculus in

3 volumes. By 1771, his sight totally failed and he was blind. His wife died in 1773.

[Slide 44] Despite these personal tragedies, Euler became even more productive!

In 1775, he wrote an average of one math paper per week [Dunham page xxvi)!

He married his first wife’s half sister in 1776. [Slide 45] On September 18, 1783

Euler spent the morning with his grandchildren and then worked on some questions

concerning the flight of balloons, inspired by the recent hot-air balloon flight in Paris

of the Montgolfier brothers. In the late afternoon he suffered a massive hemorrhage

and died. [Dunham page xxviii] [Slide 46] E.T. Bell romantically describes his

death: A little later he asked that his grandson be brought in. While playing with

the child and drinking tea he suffered a stroke. The pipe dropped from his hand,

and with the words “I die,” “Euler ceased to live and calculate.”
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[Slide 47]

SUMMING THE P -SERIES WITH P = 2

[Slide 48] We are all familiar with the MacLaurin series

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑

k=1

(−1)k+1x2k−1

(2k − 1)!
.

[Slide 49] We introduce a function P (x) =
sin x

x
for x 6= 0 (and P (0) = 1) where

P (x) =
sin x

x
=

x − x3/3! + x5/5! − x7/7! + · · ·
x

if x 6= 0

= 1 − x2

3!
+

x4

5!
− x6

7!
+ · · · .

Now Euler wants to treat this series just like he would any polynomial, and factor

it! This requires the use of an infinite product. Infinite products can be put on a

rigorous foundation by considering (analogous to infinite series) “partial products”

and limits. But this wasn’t Euler’s style! [Slide 50] Reasoning that P (x) = 0

whenever sinx = 0 (except for x = 0), he factored P (x) into

P (x) =
(
1 − x

π

) (
1 +

x

π

)
×

(
1 − x

2π

) (
1 − x

2π

)
×

(
1 − x

3π

) (
1 − x

3π

)
× · · ·

=

(
1 − x2

π2

)
×

(
1 − x2

4π2

)
×

(
1 − x2

9π2

)
× · · · .

Notice that this is the critical step! By using the series representation of sin x,

Euler has introduced both the squares of the natural numbers and π2.

If we multiply out these factors and collect together powers of x, then we get

P (x) = 1 −
(

1

π2 +
1

4π2 +
1

9π2 +
1

16π2 + · · ·
)

x2 + · · · .

[Slide 51] Since we also have

P (x) = 1 − x2

3!
+

x4

5!
− x6

7!
+

x8

9!
− · · · ,
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then by equating the coefficients of x2 we see that

1

π2 +
1

4π2 +
1

9π2 +
1

16π2 − · · · =
1

3!

or

1 +
1

22 +
1

32 +
1

42 + · · · =
π2

6
.

Even Euler himself seemed to be troubled by some of these manipulations, as

evidenced by the fact that he gave other arguments for the equation. [Dunham

page 48] Rigorous proofs exist today and use relationships between Bernoulli num-

bers and the Riemann zeta function. In fact, these rigorous derivations also use the

representations of sin x as an infinite product, just as Euler did. (See, for exam-

ple, Special Functions for Engineers and Applied Mathematicians, Larry Andrews,

Macmillan Publishing, 1986, page 89.)

[Slide 52] By considering coefficients of higher powers of x, one can show that

∞∑

n=1

1

n4 =
π4

90
and

∞∑

n=1

1

n6 =
π6

645
.

In fact, Euler went as far as showing in 1744 [Dunham page 54]:

∞∑

n=1

1

n26 =
224

27!
(76977927π26) =

1315862

11094481976030578125
π26.

[Slide 53]

ANALYTIC NUMBER THEORY

A rather cryptic equation appears on one of the Euler tricentennial posters (as

well as the cover of Dunham’s book):

∞∑

k=1

1

k
=

∏

p

1

1 − 1/p
.

Since the left hand side is the divergent harmonic series, what does this mean?

Here is Euler’s argument from Opera Omnia, Series 1, Volume 14 [Dunham pages

67-69].
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[Slide 54] Let x = 1 +
1

2
+

1

3
+

1

4
+

1

5
· · · . Then

1

2
x = x − 1

2
x =

[
1 +

1

2
+

1

3
+

1

4
+

1

5
· · ·

]
−

[
1

2
+

1

4
+

1

6
+

1

8
· · ·

]

= 1 +
1

3
+

1

5
+

1

7
+

1

9
· · ·

and
1

3

[
1

2
x

]
=

1

3

[
1 +

1

3
+

1

5
+

1

7
+

1

9
· · ·

]
=

1

3
+

1

9
+

1

15
+

1

27
· · ·

or
1 · 2
2 · 3

x = 1 +
1

5
+

1

7
+

1

11
+

1

13
+

1

17
+

1

19
+

1

23
+

1

25
+ · · ·

where the denominators are not divisible by 2 or by 3. Repeating for the next

prime: [Slide 55]

1 · 2
2 · 3

x − 1

5

[
1 · 2
2 · 3

x

]
=

[
1 +

1

5
+

1

7
+

1

11
+

1

13
· · ·

]
−

[
1

5
+

1

25
+

1

35
+

1

55
· · ·

]

or
1 · 2 · 4
2 · 3 · 5

x = 1 +
1

7
+

1

11
+

1

13
+

1

17
+

1

23
+

1

29
+ · · ·

where the denominators are not divisible by 2 or by 3 or by 5. So if the primes are

listed as p1, p2, p3, p4, . . . then this process produces:

1 · 2 · 4 · 6 · 10 · · · · · (pn − 1)

2 · 3 · 5 · 11 · · · · · pn
x = 1 +

1

pn
+ (sum of smaller terms)

where the “smaller terms are reciprocal of natural numbers which are not divisible

by 2 or by 3 or by 5 of by 7. . . or by pn. [Slide 56] Continuing the process (that

is, taking a limit) Euler concludes

1 · 2 · 4 · 6 · 10 · 12 · 16 · · · · · (pn − 1) · · · ·
2 · 3 · 5 · 7 · 11 · 13 · 17 · · · · · pn · · · ·

x = 1

or

x = 1 +
1

2
+

1

3
+

1

4
+

1

5
· · · =

1 · 2 · 4 · 6 · 10 · 12 · 16 · · · · · (pn − 1) · · · ·
2 · 3 · 5 · 7 · 11 · 13 · 17 · · · · · pn · · · ·

.
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The final relevant pattern is:

1

1 − 1/2
=

2

1(
1

1 − 1/2

) (
1

1 − 1/3

)
=

2 · 3
1 · 2(

1

1 − 1/2

) (
1

1 − 1/3

) (
1

1 − 1/5

)
=

2 · 3 · 5
1 · 2 · 4

...(
1

1 − 1/2

) (
1

1 − 1/3

) (
1

1 − 1/5

)
· · ·

(
1

1 − 1/pn

)
=

2 · 3 · 5 · 7 · 11 · · · · · pn

1 · 2 · 4 · 6 · 10 · · · · · (pn − 1)

= =
∏

p∈Pn

1

1 − 1/p

where Pn = {2, 3, 5, 7, 11, . . . , , pn}. [Slide 57] Therefore, Euler concludes

x = 1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · =

∞∑

k=1

1

k
=

2 · 3 · 5 · 7 · · · ·
1 · 2 · 4 · 6 · · · ·

=
∏

p∈P

1

1 − 1/p

where P is the set of prime numbers.

[Slide 58] Dunham colorfully describes Euler’s “proof” in this way: “with its

repeated operations on divergent series, [it] is as porous as the Swiss cheese of

Euler’s homeland.” [page 68]

[Slide 59] But what does it mean? Leopold Kronecker proved in 1876 that for

s > 1,
∞∑

k=1

1

ks
=

∏

p∈P

1

1 − 1/ps
,

and so Euler’s result can be interpreted as a limiting case of Kronecker’s. [Dunham

page 70]

The real significance of Euler’s work is that he has linked together analytic ideas

(series) with number theoretic ideas (prime numbers) and, in the process, set the

stage for the development of analytic number theory.
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[Slide 60]

GEOMETRY AND THE EULER LINE

Plane Euclidean geometry lay mostly dormant for about 2,000 years after Eu-

clid. In 1767, Euler proved a new result concerning properties of triangles. In the

100 years that followed, geometry enjoyed a bit of a rebirth, of course with the in-

troduction of projective and non-Euclidean geometry, but also with new results in

classical Euclidean geometry, such as the introduction of the Poncelet/Brianchon

circle.

[Slide 61] The orthocenter of a triangle is the intersection of the triangles three

altitudes. The centroid is the intersection of the three lines which run from a vertex

to the midpoint of the opposite side. The circumcenter is the center of the circle

which passes through the three vertices of the circle.

[Slide 62] Euler proved that these three points lie on the same line, called the

Euler Line.

[Slide 63]

CONCLUSION

In Euler – The Master of Us All W. Dunham comments (page xvi): “No student

of literature would be satisfied with a mere synopsis of Hamlet. In like fashion,

no mathematician should go through a career without meeting Euler face-to-face.

To do otherwise suggests not only an indifference about the past but also, in some

fundamental way, a genuine selfishness.”

[Slide 64] Dartmouth College has created the Euler Archive which contains

PDF files of the original versions of Euler’s work: http://www.math.dartmouth.

edu/∼euler/

[Slide 65] For those of us who only speak English, there are some translations

of Euler’s work, though not many. Included are Introduction to Analysis of the

Infinite, Foundations of Differential Calculus, and Elements of Algebra.
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[Slide 66]
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[Slide 67] (This is the image that was on the ETSU Euler birthday cake.)
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