Some inequalities for entire functions of exponential type. (English summary)

Summary: “If $f(z)$ is an asymmetric entire function of exponential type τ, $\|f\| = \sup_{-\infty < x < \infty} |f(x)|$, then according to a well-known result of R. P. Boas, Jr. [Illinois J. Math. 1 (1957), 94–97; MR0084577], $\|f'\| \leq \frac{1}{2} \tau \|f\|$ and $|f(x + iy)| \leq \frac{1}{2} (e^{\tau |y|} + 1) \|f\|$, $-\infty < x < \infty$, $-\infty < y \leq 0$. Both of these inequalities are sharp. In this paper we generalize the above two inequalities of Boas by proving a sharp inequality which, besides giving as special cases the above two inequalities of Boas, yields some other results as well.”

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 1996, 2016