A Bernstein type L^p inequality for a certain class of polynomials. (English summary)

The classical theorem of S. Bernstein [Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle, Gauthier-Villars, Paris, 1926; JFM 52.0256.02] relates the supremum norm of a complex polynomial P of degree at most n and its derivative P' by the Bernstein inequality $\sup_{|z|=1} |P'(z)| \leq n \cdot \sup_{|z|=1} |P(z)|$. The Bernstein inequality reduces to equality if and only if $P(z) = c z^n$ for some constant $c \in \mathbb{C}$. The inequality has been extended to the L^p norm [A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge Univ. Press, New York, 1959; MR0107776]. The paper under review provides an L^p-estimate ($0 \leq p \leq \infty$) of P' in terms of P for the class consisting of the complex polynomials P of degree at most n which are nonzero inside a sufficiently large neighborhood of the origin of the complex plane \mathbb{C} and satisfy the condition $P'(0) = \cdots = P^{(m-1)}(0) = 0$ ($m \leq n$) at the origin of \mathbb{C}.

Walter Schempp

© Copyright American Mathematical Society 1999, 2016