Decompositions of uniform complete directed multigraphs into each of the orientations of a 4-cycle. (English summary)

Let D^λ_v denote the uniform complete directed multigraph on v vertices with multiplicity λ. For g a directed graph, a g-decomposition of D^λ_v is a decomposition of the arc multiset of D^λ_v into isomorphic copies of g. There are four orientations of a 4-cycle: the 4-circuit and the digraphs X, Y and Z with arc sets \{(a, b), (b, c), (c, d), (a, d)\}, \{(a, b), (b, c), (d, c), (a, d)\} and \{(a, b), (c, b), (c, d), (a, d)\}, respectively.

With an arbitrary λ, the authors establish necessary and sufficient conditions for the existence of the decomposition of D^λ_v into each of the orientations of a 4-cycle: a 4-circuit decomposition of D^λ_v exists if and only if $\lambda v(v - 1) \equiv 0 \pmod{4}$, except $v = 4$ and λ odd; an X-decomposition of D^λ_v exists if and only if $\lambda v(v - 1) \equiv 0 \pmod{4}$, except $v = 5$ and $\lambda = 1$; a Y-decomposition of D^λ_v exists if and only if $\lambda v(v - 1) \equiv 0 \pmod{4}$, except $\lambda = 1$; and a Z-decomposition of D^λ_v exists if and only if $\lambda v(v - 1) \equiv 0 \pmod{4}$, except $\lambda = 1$. The authors employ direct methods of construction, and their constructions lead to necessary and sufficient conditions for the existence of such decompositions which admit cyclic or rotational automorphisms.