Some Rotational Automorphisms Of
Mendelsohn Triple And Quadruple Systems

Gary D. Coker

Department of Mathematics
Williamsburg Technical College
Kingstree, South Carolina 29556-4197
and
Robert B. Gardner
Department of Mathematics
East Tennesse State University
Johnson City, Tennessee 37614-0663

ABSTRACT. A Mendelsohn design of order v with block size n is
said to be k-rotational if it admits an automorphism consisting
of a fixed point and & cycles each of length (v — 1)/k. It is said
to be k-near-rotational if it admits an automorphism consisting
of w fixed points and k cycles each of length (v —w)/k where w
is the order of the smallest nontrivial Mendelsohn design with
block size n. A Mendelsohn triple system is k-transrotational
if it admits an automorphism consisting of a fixed point, a
transposition and k cycles each of length (v — 3)/k. The ques-
tion of existence is addressed for k-transrotational and k-near-
rotational Mendelsohn triple systems and for k-rotational and
k-near-rotational Mendelsohn quadruple systems.

1 Introduction

A Mendelsohn design of order v with block size n, denoted M D(v,n), is an
ordered pair (V, B) where V is a v-element set of points and B is a collection
of cyclically ordered n-tuples of distinct elements of V, called blocks, such
that every ordered pair of distinct elements of V occurs in exactly one
block of B. A MD(v,n) is equivalent to an arc-disjoint decomposition of
the complete directed graph on v-vertices into n-circuits. It is, therefore,
also equivalent to a balanced n-circuit design of order v with A = 1. For a

survey of these relationships, see [3].
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A M D(v,3) is also called a Mendelsohn triple system of order v, denoted
MTS(v), and a M D(v,4) is called a Mendelsohn quadruple system of order
v, denoted M QS(v). Nathan Mendelsohn introduced MTSs as a general-
ization of Steiner triple systems (briefly, STS) and proved that a MTS(v)
existsif andonly if vy = 0or1 (mod 3), v # 6 {12] (Mendelsohn called these
structures “cyclic triple systems”; the term “Mendelsohn triple system” is
due to Mathon and Rosa [11]). A MQS(v) exists if and only if v =0 or 1
(mod 4), v # 4 [1, 19]. The spectra of M D(v,n)s is now known for all n
such that 3 < n < 16, n # 15 (see [1, 2, 4)).

An automorphism of & M D(v,n) is a permutation of the pomt-set |4
which fixes the set of blocks B. The orbit of a block under an automor-
phism 7 is the collection of images of the block under the powers of w. A
collection of blocks B is a collection of base blocks for a M D(v,n) under
the automorphism = if the orbits of the blocks of 3 produce a set of blocks
for a M D(v,n) and exactly one block of 8 occurs in each orbit. A permu-
tation 7 of a v-element set is of type [r] = [my, m2,.. 7r,,] if the disjoint
cyclic decomposition of m consists of m; cycles of length . It follows that
doim=w.

Several types of automorphisms have been studied for the question “For
what values of v does there exist a ST'S(v) admitting an automorphism
of the given type‘?” In particular, a ST'S(v) admitting an automorphism
of type [0,0,...,0,1] is said to be cyelic and exists if and only if v = 1
or 3 (mod 6) v # 9 [15. A STS(v) which admits an automorphism
of type [1,0,...,0,k,0,...,0] is k-rotational. The spectra ol k-rotational
STSs are known for k € {1,2,3,4,6} [6,17]. This idea of rotational ST'Ss
has been extended somewhat. A ST'S admitting an automorphism of type

[1,1,0,...,0,k;0,...,0] is k-transrotational and the spectra of these are
known for k € {1,2,3} [5, 10]. If 2 STS admits an automorphism of type
(3,0,...,0,k,0,...,0], it is k-near-rotational and the spectra are known for

k=0,2,3,4 (mod 6) (9].

MTSs and MQSs have also been explored in connection with this type
of question. A cyclic MT'S existsif and only if v =1 or 3 (mod 6), v # 9 [§]
and a cyclic MQS(v) exists if and only if v =1 (mod 4) [14]. k-rotational
MTSs are explored in [7] in which necessary and sufficient conditions are
given for an infinite number of values of k, but not for all k. It is shown
in [16] that a l-rotational MQS(v) exists if and only if » = 1 (mod 4).
The purpose of this paper is-to further explore the existence of M'TSs and
MQSs admitting various types of rotational automorphisms.

2 More Rotational Mendelsohn Quadruple Systems

Pennisi {16] has shown that a 1-rotational MQS(v) exists if and only if
v =1 (mod 4). This result can be used to trivially construct a large class
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of k-rotational MQSs.

Lemma 2.1. If v = 1 (mod 4) and v = 1 (mod k), then there exists a
k-rotational MQS(v)

Proof: If v = 1 (mod 4) then there is & 1-rotational MQS(v) admitting
an automorphism = of type [1,0,...,0,1,0]. If v = 1 (mod k), then 7* is
an automorphism of type [1,0,...,0,%,0,...,0] and the MQS(v) is also
k-rotational. |
We now consider the case v = 0 (mod 4). We will let the point-set
of a k-rotational MQS(v) be {oo} U Zy x Z where N = L. We will
represent (z,y) € Zy X Zi as z, and let the relevant automorphism be
o= (OO)(OQ, 10, ey (N — 1)0) cen (Ok—h 1;:__1, ey (N - 1);;..1). Here and
throughout, we represent the ordered n-tuple containing the ordered pairs
(z1,22), (x2,%3)y.+ .y (Tn—1,Zn), (zn,z1) by any cyclic shift of [z1,za,...,
Ip—1, xﬂ]
Lemma 2.2, If v =4 (mod 12) then there exists a 3-rotational MQS(v).

Proof: Let v = 12t + 4 and consider the collection of blocks:

[OO, OOa (3t).13 (2t -+ 1)0]; [00’ 01: (3t + 1)2: tl]v [Ooi 02: (2t + 1)Ov t2]:
[00,?:1,(1-1-22')2,(3-}-4?:)0] fort=0,1,...,3t—1,3t+1,...,4f and
[01,(2 + 4)o, (2 + 24)2, (3 +44)) for i = 0,1,...,3t — 1,3t +1,..., 4¢.

These blocks, along with a collection of base blocks fc - a cyclic MQS(4t+
1) on the point-set Zy x {2}, where N = 3’-‘3;-1—, under the automorphism
(02,12,...,(N — 1)), form a collection of base blocks for a 3-rotational
MQS(v). : O

As in Lemma 2.1, we can show that a k-rotational MQS(v) exists if

v = 0 {mod 4), k = 3 (mod 6} and v = 1 (mod k). Combining this fact
with Lemma 2.1, we have:
‘Theorem 2.1. If k =1 or k is even, then a k-rotational MQS(v) exists
ifand only if v=1 (mod 4) and v =1 (mod k). If k=3 (mod 6), then
a k-rotational MQS(v) exists if and only if v=0o0r1 (mod4) and v=1
(mod k).

We leave the question of k-rotational M QS(v)s open for k = 1 or 5 (mod
6), k> 1 and v =0 (mod 4).

3 Transrotational and Near-Rotational Mendelsohn Triple Sys-
tems

In this section we give necessary and sufficient conditions for the existence of
a k-transrotational MTS(v) for k= 1,2 or 3 (mod 4) and for the existence
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of a k-near- rotational MTS(v) for all k. First we consider 1-transrotational
MTS(v) with the point-set {c0, a,b} U Zy where the automorphism is 7= =
(00)(0., b)(OI 1,..., (N - 1))'

Lemma 3.1. If a k-transrotational MTS(v) exists, then v = 3 (mod 2k).
Proof: There must be some block of such a system of the form [a, z, ¥
where x,y € Zy x Zx. Applying ="V to this block, we see that [xV(a), z, ]
is also a block of the system. So #¥(a) = a and N must be even and the
result follows. _ _ O

Lemma 3.2. If v =1 or 3 (mod 6) then there exists a 1-transrotational
MTS(v).

Proof: We consider three cases,
case 1. Suppose v = 1 (mod 6), say v = 6t + 1. Consider the blocks:’

[o0, 0,3t — 1), [a,0,3t — 2}, [b,0, 3], [0, a, b],
[0,(1+12),(t+1+28)] fori=0,1,...,t -2, and
[0, (2t — 1 44), (7t — 2+ 23)] for i = 0,1,...,¢ — 2.

case 2. Suppose v = 3 (mod 12), say v = 12t 4+ 3. Consider the blocks:

[00,0,2¢], [a, 0], [b,0,3¢], [00, a, b], [0, 4t, 8¢], [0, 8¢,4¢], and
[0,(1+41),(2t+2+24)] fori=0,1,...,t - 2,¢,t+1,...,2t — 2, and
[0, (46 + 1 +4), (14 + 1+ 20)] for i =0, 1,...,2¢t — 1.

case 8. Suppose v =9 (mod 12), say v = 12t + 9. Consider the blocks:

[00, 0, (2¢ + 1)), [a, 0, (5¢ + 3)], [b, 0, (11t + 5)], [0, a, b],

[0, (4¢ + 2), (8 + 4)], [0, (8¢ + 4), (4¢ + 2)],

[0, (1 414), (2t +3+28)] for i =0,1,...,2t — 1, and

[0, (4t +3+1), (2 +2+42)] for i=0,1,...,t — L,t+1,t+2,...,2t
(omit if ¢t = 0 and let = 0,2 if ¢ = 1).

In each case, the collection of blocks is a collection of base blocks for a
1-transrotational MTS(v) under . 0O

We now turn our attention to 2-transrotational MTS(v) on the point-set
{00, a,b} U Z x Zy where k = %33 under the obvious automorphism. We
will need the following structures. An (A, n)-system is a partitioning of
the set {1,2,...,2n} into ordered pairs (a,,b,) such that b, = a, + r for
r=1,2,...,n. An (A,n)-system exists if and only if n = 0 or 1 {(mod 4)
[20]. A partitioning of the set {1,2,...,2n — 1,2n + 1} into ordered pairs
(ar,b,) such that b, = a, +r for r = 1,2,...,n is called a (B, n)-system
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and exists if and only if » = 2 or 3 {(mod 4) [13]. A (C,n)-system is a
partitioning of the set {1,2,...,n,n+2,n+ 3,...,2n + 1} into distinct
ordered pairs {(ar,b,) such that by =ar+rforr=12,...,n. A(C,n)-

system exists if and only if n = 0 or 3 (mod 4) [18]. A pa.rtltlomng of the
set {1,2,...,n,n+2,n+3,...,2n,2n + 2} into ordered pairs (ay, b,.) such

" that b = ar +7r for r = 1, 2 ,n is called a (D,n)-system and exists

ifand only if n =1 or 2 (mod 4 n # 1 [18]. Notice that for each of
these systems, the set {r ar + 1, by + r|r = 1,2,...,n} includes all but two
elements of the set {1,2,...,3n +2}. It is this property of which we will
take advanta.ge

Lemma 3.3. If v = 7 (mod 12) then there exists a 2-transrotational
MTS(v).

Proof: We consider four cases.
case 1. Suppose v = 7 or 31 (mod 96), say v = 24t + 7 where t = 0 or 1
(mod 4). Consider the blocks:

[00, a, 8], {oo, 09, 2], [00, 01, 21],

[00, (G + 1)1, (2i + 1)o] for i=0,1,...,6t,

104, (6t + 1 +14)o, (1 +24),] for i = 0, 1,. .., 6¢,

[00, (27)0, (2b, + 2t)0], [04, (2r)1, (20, 4 2t)1], {(2br + 2t)o, (27)0, O0],
[(2b, + 2t)1, (2r)1, 01} for 7 = 2,3,...,t where the b, are from an
(A, t) — system, and

la, 00, (2a1 + 2t)q], @, 01, (2a1 + 2¢t)1}, b, (2b1- + 2t)o, Op),

[b (2b1 + Qt 1., 1] [(261 + 2t 0, 20,00] [(261 + 2t 1, 21,01] where a,
and by are from the (A, t) — system used above.

case 2. Suppose v = 55 or 79 (mod 96), say v = 24t + 7 where t = 2 or 3
(mod 4). Consider the blocks:

[00, a, B], [00, 09, 20], [0, 01, 24],

[00, (i+1)1,(2¢ + 1)0] for1=190,1,...,6t,

[01, (6t + 1 4-14)o, (1 +24)1) for i =0, 1,..., 6,

[00, (2T)01 (2br + 2t)0]’ [011 (21‘)1, (2br + 2t)1]s [(261' + 23)0: (27)01 OOI:
[(2b, + 2t)1, (2r)1,04] for r = 2,3, ...,¢t where the b, are from a
(B,t) — system, and

(2, 0o, (2a1 + 2t)o], [a, 01, (2a1 + 2t)1], {b, (261 + 2)o, Oo),

[5, (2b1 + 2¢)1, 04], [(2by + 2t)o, 20, Oo], [(2b1 + 2t}1, 21, 04]
where ay and b; are from the (B, t) — system used above.
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case 3. Suppose v = 19 or 43 (mod 96), say v = 24£ + 19 where { = 0 or 1
(mod 4). Consider the blocks:

[co, a, b], [co, 0o, (6t + 4)0), [co, 01, (6 + 4)1),

[Oo, (i + 1)1, (2i + 1)o] for i =0,1,...,6¢t + 3,

[0,,(6t +4+14)o,(1+2{)y]) for i =0,1,...,6t+3,

[00, (27)0, (2br + 2£)0), [01, (2r)1, (2B + 2t)1], [(2by + 2¢)0, (2r)0, Oo],
[(2b. + 2t)1,(2r)1,04] for r = 1,2,...,t where the b, are from an
(A,t) — system, and

[a, 0o, (6 + 2)o), [a, 01, (6¢ + 2)1], [b, Oo, (6t + 6)o], [b, O1, (6t + 6)1]-

case 4. Suppose v = 67 or 91 (mod 96), say v = 24t + 19 where t =2 or 3
(mod 4). Consider the blocks:

[oo, a, b], [00, Og, (6t + 4)0], {oo, 0y, (6t + 4)1],

[00, (i + 1)1, (26 + 1)o] for i = 0,1,...,6¢t + 3,

[01, (6t + 4 +4)o, (1 4 24)y] for i = 0,1,...,6t +3,

(00, (2r)o, (2b, + 2¢)o], [01, (2r)1, (26 + 2t) ] (26 + 2t)0, (2r)o, Oo],
[(2br 4 2t)1, (2r)1,04) for r =1,2,...,t where the b, are from a
(B,t) — system, and

[a, 0o, (Bt){)]: [a! 0y, (6t)1]s [b: 0o, (6t + 8)0]: [b: 01, _(ﬁt + 8)1]'

In either case, the collection of blocks is a collection of base blocks for a
2-transrotational MTS(v) under 7. O

Lemma 3.4. If v = 3 (mod 24) then there exists a 2-transrotational
MTS(v).
Proof: Suppose v = 24t + 3. Consider the blocks:

(00, @, ], [a, O, (3¢)1], [a, 01, (3t)o), [, Co, (9t)1], [B, O1, (9t)o], [Oo, (8t)o, (4¢)o),

[oo, 04, ((t — 1)/2)0) and[oc, Oy, ({7t + 1)/2),] (omit these blocks if ¢ is even),

[00, 04, ((13t)/2)0] and{oo, Og, ((19¢)/2)1] (omit these blocks if ¢ is odd),

(0o, (1 + %), (9t + 1 + 2i)gland[0y, (1 + )1, (9% + 1 + 2:),]
fori=0,1,...,t -1,

[0o, (10t + £)o, (9¢ + 2i)o)and[0y, (10t + £)1, (9¢ + 2i);]for i = 0,1,...,t — 1,

[00,1:1,(95—1 —z')l]forz'=0 1,...,3 -1,

[O0, (6 + 1 +14)1, (3t — 1 —z)l]for i=0,1,...,3t -2,

[01,70,(9t — 1 —d))for i =0,1,...,3t — l(omlt i=(t— 1)/2 if ¢ is odd), and

01, (66 +1+4)o, (3t -1 —i)]for i=0,1,...,3t — 2(omit i = (¢t — 2)/2

if ¢ is even).
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This collection of blocks is a collection of base blocks for a 2—transro£ationa1
MTS(v) under . . O

Lemma 3.5. If v = 15 (mod 24) then there exists a 2-transrotational
MTS(v). '

- Proof: We consider four cases.
case. 1. Suppose v = 15. Consider the blocks:

[OO, 2, b]: [OO, 00; 01]: [OO, 011 40]! [a'a 00: 11]& [b: 00: 51]: [a'1 011 10]) [b: 01: 50]:
[001 303 10]:. [01: 31: 11]1 [00' 20: 40]) [001 21: 50]) [011 20) 51]: 3ﬂd[01, 00141]'

case 2. Suppose v = 39. Consider the blocks:

['oo, a, b], [OO, 0o, 01], [OO, 0,4, 100], [a, 0o, 140], [b, 0o, 160], [a., 01,41], [b, 04, 161],
[0o, 16, 70, [O0, 20, 90, [00, 30, 80}, [0, 8o, 30, [Oa, 120, 66}, [Op, 104, 1o],
{00, 164, 140},
[04,%, (21 + 1);) for i =0,1,...,8, and
(01, (11 4 4)o, (4 + 24)4] for i =0,1,2,3,4,6.
case 9. Suppose v = 15 or 87 (mod 96), v > 87, say v = 24t 4 15 where
t =0 or 3 (mod 4) and ¢ > 3. Consider the blocks:
[OO, O, (8“: + 4)0]! [OO, 0y, (St + 4)1]:
[oo, 2, b]! [a" Oo, 0.1]1 [a'w 0o, (2t + 2)1], [b’ Olr (2t + 1)0]1 [b: 0y, (12t + 5)0]1
[00, 1o, (4t + 3)0], [01, (4t 4 2),, (8t + 4)4], [01, (6t + 2)o, (12¢ + 5)1],
00,3+ 1)1, (26 + 1)) for i =0,1,...,2,2t +2,2¢ 4+ 3,...,6t +1,
[01,(6t + 3 +4)o, (1 +2¢8)y] for i =0,1,...,6t+ 1, and _
[Co, (27)0, (26 + 2t)o], [01, (2r)1, (26, + 2¢)1], [(2br + 2¢)o, (2r)0, Do),
[(2b, + 2t)1, (27)1,04] for r = 1,2,...,t where the b, are from a
(C,t) — system.

case 4. Suppose v = 39 or 63 (mod 96), v > 63, say v = 24t + 15 where
=1or 2 (mod 4) and ¢ > 2. Consider the blocks:

[OO 09, (St + 4)0] [00 04, (8t + 4)1]

00, a, b], [a, 09, 01], [a, Op, (2¢ + 2)1], [b, 01, (2¢ + 1)), [b, 01,(12t+5)0]

[00, lg, (4t + 3)0], [01, (4t + 2)q, (8t + 4)1], [01, (6t + 2)o, (12¢ + 5)1],

0o, (Z+1}1,(2i 4+ 1)) for i =0,1,...,2¢,26 +2,2¢ +3,...,6t+ 1,

[01, (6t + 3 +4)o, (1 + 20),] for i = o, 1,...,6t+1, and

[00, (2r)0, (26 + 2t)o), [01, (2r) 1)(2br+2t 1], [(2by + 2t)o, (2r)o, o),
(26, + 2t)1, (27)1,04] for = 1,2,...,t where the b, are from a
(D,t) —system.
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In each case, the collection of blocks is a collection of base blocks for a
2-transrotational MTS(v) under . O

Notice that Lemmas 3.1 and 3.3-3.5 combine to tell us that a 2-transro-
tational MT'S(v) exists if and only if v = 3 or 7 (mod 12). By taking odd
powers of automorphisms, the results of this section give: ' "

Theorem 3.1. If k = 1,2, or 3 (mod 4) then a k-transrotational MTS(v)
exists if and only if v=0o0r 1 (mod 3) and v = 3 (mod 2k).

We now consider near-rotational MT'Ss. If v = 1 or 3 (mod 6) then a
1-near-rotational MT S(v) has the base block given in Lemma 3.2 under the
automorphism (c0)(a)(5)(0, 1,...,v—4). This fact along with the following
lemma give the sufficient conditions for the existence of a 1-near-rotational
MTS(v).

Lemma 3.7. If v = 0 or 4 (mod 6), v 3£ 12 then there exists a I-near-
rotational MTS{v). :

Proof: Ifv = 0or4 (mod 6), v # 12, then there exists a cyclic MT'S(v—3).
Let 8 be a set of base blocks for such a system on the point set Z,_s
under the automorphism (0,1,...,v — 4). With [z,y,2] € 8, associate
the differences §; = (y — z) (mod v — 3), 8, = (2 ~y) (mod v — 3) and
b3 = (z — z) (mod v — 3). Then it is necessary that & + 6 + 63 = 0
(mod v — 3). If v = 4 (mod 6), then &, 62 and 85 are distinct. If v = 0
{(mod 6) then one block of # may have associated differences that satisfy
81 =6 =083 = ”T‘a and another block may have differences satisfying the
condition §; = 83 = 3 = 3(1’313-1 These two base blocks are said to be short
orbit blocks since the lengths of their orbits are % the lengths of the orbits
of any other base block of this system. To construct a 1-near-rotational
MTS(v), consider the set 3/{b} where b is any element of 8 other than a
short orbit block. Let dy, dz, d3 be the differences associated with b. The set
ﬁu{[mll ©02, 003], [0031 002, 001]3 [001: 0, dl]: [0023 0, dZ]a [003f Or d3]}/{b} isa
set of base blocks for a 1-near-rotational MT'S(v) on {ooy, cog, 003} U Zy3
under the automorphism (co;)(002)(003)(0, 1,...,v —4). .
A l-near-rotational MTS(12) is equivalent to partitioning the set of
differences {1,2,4,5,7,8} (the differences 3 and 6 being associated with
short orbit blocks) into two sets {d1,d2,ds} and {d4,ds,ds} such that
dy+dz+d3 = dg+ds+ds =0 (mod 9). Clearly, this cannot be done
and a l-near-rotational MTS(12) does not exist.
By taking powers of the automorphism, the existence of 1-near-rotational
MTSs gives us:;

Theorem 3.2. A k-near-rotational MTS(v) exists if and only if v =0 or
1 (mod 3), v % 6 and v =3 (mod k) and if k=1 then v # 12.
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Proof: We need only to present a 3-near-rotational MT'S(12). Consider
the blocks: :

[001, 002, 003], [003, 002, ©01], [001, 0p, 20], [001, 01, 21], [001, 02, 22)
[002, 00, 01], [002, 04, 03], [o03, 02, 0], {0, 01, Op], [ca, 02, 04, [oos, Op, O2],
[0, 10, 20}, [01, 11, 21], {02, 12, 23], {0, 11, 22], [22, 11, G0, [0, 21, 12],

and [12, 21, 00].

This is a collection of base blocks for a 3-near-rotational MTS(12) on
the point-set {ooj, 00g,003} U {0,1,2} x {0,1,2} under the obvious auto-
morphism. A

4 Near-Rotational Mendelsohn Quadruple Systems

In general, we say that a M D(v,n) is k-near-rotational if it admits an
automorphism consisting of w fixed points and k cycles of length Y22 where
w is the order of the smallest nontrivial M D{v,n). It is fairly easy to see
that the fixed points of an automorphism of a M D{v,n) form a subsystem
and so by having an automorphism with w fixed points and k cycles of the
same length, we are as “near” as possible to having a k-rotational M D(v, n).
Therefore, with n = 4 we say that a MQ.S(v) is k-near-rotational if it admits
an automorphism consisting of 5 fixed points and k& cycles of length 3—}?
In this section we give necessary and sufficient conditions for the existence
of k-near-rotational MQSs for all k.

We consider 1-near-rotational MQS(v) on the point-set {o0y,00s,...,
005} U Zy,_5 under the obvious automorphism.

Lemma 4.1. If v = 0 (mod 4), v > 16 then there exists a I-near-rotational

MQS(v).
Proof: Suppose v = 4¢. Consider the blocks:

[c01, 0, (28 — 7), (4t — 13)], {009, 0, (2t — 5), (4¢ — 9)],
[c03, 0, (2t — 3), (4t — 3)], [004, 0, (2t — 1), (4¢ - 3)],
[oos, 0, (2¢ +- 1), (4 + 3)], and
[0, (2i + 1), (4i+3), (4t ~ 3+24)] for i = 0,1,...,¢ =5
(omit these blocks if ¢ = 4).
‘These blocks along with the blocks for a MQS(5) on the points {ooy, cog,

...,005} form a collection of base blocks for a 1-near-rotational MQS(v)
under the given automorphism. a

Lemma 4.2. If v =1 (mod 4), v > 17 then there exists a 1-near-rotational
MQS(v).
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Proof: We consider three cases.
case 1. Suppose v = 17. Consider the blocks:

001, 0,1, 3], [002,0, 4, 9], [003, 0, 6, 1] [004, 0,8, 51, [005,0 10,9},
and [0,3,6,9].

case 2. Suppose v = 1 (mod 8), say v = 8¢ + 1 where ¢ > 3. Consider the
blocks:

[001,0, (4 — 5), (8¢ — 9)], [002,0, (4t — 3), (8¢ — 5)], [00s, 0, (4t — 1), (8¢ — 1)),
[004, 0, (4t + 1), (6t + 1)], [oos, 0, (62 — 3), (4¢ — 3)], [0, (2t — 1), (4¢ — 2),

(6t ~ 3)] and -
[0,(2 + 1), (4i +3), (8t — 2+ 24)] for i =0,1,...,t — 2, t,t+1,..., 2t ~ 4

case 8. Suppose v = 5 (mod 8), say v = 8t + 5 where ¢t > 2. Consider the
blocks:

[c01,0, (4t — 3), (8¢ — 5)], [002,0, (4t — 1), (8¢ — 1)], [c0s, 0, (4t + 1), (8 + 3))],

[004, 0, (4t + 3), (6t + 2)], [00s, 0, (66 + 1), (4t + 1)), [0, 2¢, 4¢, 6¢] and

[0,(2¢+1),(4i +3), (8t +2+2i)] for i =0,1,..., ¢ - 2,¢,¢t+1,...,2t - 3.
In both cases, these blocks along with the blocks for a M QS(5) on

the point-set {coy,...,00s} form a collection of base blocks for a 1-near-
rotational M QS(v) under the given automorphism. "

Clearly, a k-near-rotational MQS(v) does not exist for v < 16. Therefore,
as in the previous sections, Lernmas 4.1 and 4.2 give us:

Theorem 4.1. A k-near-rotational M QS(v) exists if and only if v=0 or
1 (mod 4), v > 16 and v =5 (mod k).
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