Some Rotational Automorphisms Of Mendelsohn Triple And Quadruple Systems

Gary D. Coker

Department of Mathematics
Williamsburg Technical College
Kingstree, South Carolina 29556-4197
and
Robert B. Gardner

Department of Mathematics
East Tennesse State University
Johnson City, Tennessee 37614-0663

ABSTRACT. A Mendelsohn design of order v with block size n is said to be k-rotational if it admits an automorphism consisting of a fixed point and k cycles each of length (v-1)/k. It is said to be k-near-rotational if it admits an automorphism consisting of w fixed points and k cycles each of length (v-w)/k where w is the order of the smallest nontrivial Mendelsohn design with block size n. A Mendelsohn triple system is k-transrotational if it admits an automorphism consisting of a fixed point, a transposition and k cycles each of length (v-3)/k. The question of existence is addressed for k-transrotational and k-near-rotational Mendelsohn triple systems and for k-rotational and k-near-rotational Mendelsohn quadruple systems.

1 Introduction

A Mendelsohn design of order v with block size n, denoted MD(v,n), is an ordered pair (V,B) where V is a v-element set of points and B is a collection of cyclically ordered n-tuples of distinct elements of V, called blocks, such that every ordered pair of distinct elements of V occurs in exactly one block of B. A MD(v,n) is equivalent to an arc-disjoint decomposition of the complete directed graph on v-vertices into n-circuits. It is, therefore, also equivalent to a balanced n-circuit design of order v with $\lambda = 1$. For a survey of these relationships, see [3].

A MD(v,3) is also called a *Mendelsohn triple system* of order v, denoted MTS(v), and a MD(v,4) is called a *Mendelsohn quadruple system* of order v, denoted MQS(v). Nathan Mendelsohn introduced MTSs as a generalization of Steiner triple systems (briefly, STS) and proved that a MTS(v) exists if and only if $v \equiv 0$ or $1 \pmod{3}$, $v \neq 6$ [12] (Mendelsohn called these structures "cyclic triple systems"; the term "Mendelsohn triple system" is due to Mathon and Rosa [11]). A MQS(v) exists if and only if $v \equiv 0$ or $1 \pmod{4}$, $v \neq 4$ [1, 19]. The spectra of MD(v,n)s is now known for all n such that $3 \leq n \leq 16$, $n \neq 15$ (see [1, 2, 4]).

An automorphism of a MD(v,n) is a permutation of the point-set V which fixes the set of blocks B. The orbit of a block under an automorphism π is the collection of images of the block under the powers of π . A collection of blocks β is a collection of base blocks for a MD(v,n) under the automorphism π if the orbits of the blocks of β produce a set of blocks for a MD(v,n) and exactly one block of β occurs in each orbit. A permutation π of a v-element set is of type $[\pi] = [\pi_1, \pi_2, \ldots, \pi_v]$ if the disjoint cyclic decomposition of π consists of π_i cycles of length i. It follows that $\sum i\pi_i = v$.

Several types of automorphisms have been studied for the question "For what values of v does there exist a STS(v) admitting an automorphism of the given type?" In particular, a STS(v) admitting an automorphism of type $[0,0,\ldots,0,1]$ is said to be cyclic and exists if and only if $v\equiv 1$ or $3\pmod{6}, v\neq 9$ [15]. A STS(v) which admits an automorphism of type $[1,0,\ldots,0,k,0,\ldots,0]$ is k-rotational. The spectra of k-rotational STSs are known for $k\in\{1,2,3,4,6\}$ [6,17]. This idea of rotational STSs has been extended somewhat. A STS admitting an automorphism of type $[1,1,0,\ldots,0,k;0,\ldots,0]$ is k-transrotational and the spectra of these are known for $k\in\{1,2,3\}$ [5, 10]. If a STS admits an automorphism of type $[3,0,\ldots,0,k,0,\ldots,0]$, it is k-near-rotational and the spectra are known for $k\equiv 0,2,3,4\pmod{6}$ [9].

MTSs and MQSs have also been explored in connection with this type of question. A cyclic MTS exists if and only if $v \equiv 1$ or 3 (mod 6), $v \neq 9$ [8] and a cyclic MQS(v) exists if and only if $v \equiv 1 \pmod{4}$ [14]. k-rotational MTSs are explored in [7] in which necessary and sufficient conditions are given for an infinite number of values of k, but not for all k. It is shown in [16] that a 1-rotational MQS(v) exists if and only if $v \equiv 1 \pmod{4}$. The purpose of this paper is to further explore the existence of MTSs and MQSs admitting various types of rotational automorphisms.

2 More Rotational Mendelsohn Quadruple Systems

Pennisi [16] has shown that a 1-rotational MQS(v) exists if and only if $v \equiv 1 \pmod{4}$. This result can be used to trivially construct a large class

of k-rotational MQSs.

Lemma 2.1. If $v \equiv 1 \pmod{4}$ and $v \equiv 1 \pmod{k}$, then there exists a k-rotational MQS(v)

Proof: If $v \equiv 1 \pmod{4}$ then there is a 1-rotational MQS(v) admitting an automorphism π of type [1, 0, ..., 0, 1, 0]. If $v \equiv 1 \pmod{k}$, then π^k is an automorphism of type [1, 0, ..., 0, k, 0, ..., 0] and the MQS(v) is also k-rotational.

We now consider the case $v \equiv 0 \pmod 4$. We will let the point-set of a k-rotational MQS(v) be $\{\infty\} \cup Z_N \times Z_k$ where $N = \frac{v-1}{k}$. We will represent $(x,y) \in Z_N \times Z_k$ as x_y and let the relevant automorphism be $\pi = (\infty)(0_0,1_0,\ldots,(N-1)_0)\ldots(0_{k-1},1_{k-1},\ldots,(N-1)_{k-1})$. Here and throughout, we represent the ordered n-tuple containing the ordered pairs $(x_1,x_2),(x_2,x_3),\ldots,(x_{n-1},x_n),(x_n,x_1)$ by any cyclic shift of $[x_1,x_2,\ldots,x_{n-1},x_n]$

Lemma 2.2. If $v \equiv 4 \pmod{12}$ then there exists a 3-rotational MQS(v).

Proof: Let v = 12t + 4 and consider the collection of blocks:

$$[\infty, 0_0, (3t)_1, (2t+1)_0], [\infty, 0_1, (3t+1)_2, t_1], [\infty, 0_2, (2t+1)_0, t_2],$$

 $[0_0, i_1, (1+2i)_2, (3+4i)_0]$ for $i = 0, 1, \dots, 3t-1, 3t+1, \dots, 4t$ and $[0_1, (2+i)_0, (2+2i)_2, (3+4i)_1]$ for $i = 0, 1, \dots, 3t-1, 3t+1, \dots, 4t$.

These blocks, along with a collection of base blocks for a cyclic MQS(4t+1) on the point-set $Z_N \times \{2\}$, where $N = \frac{v-1}{3}$, under the automorphism $(0_2, 1_2, \ldots, (N-1)_2)$, form a collection of base blocks for a 3-rotational MQS(v).

As in Lemma 2.1, we can show that a k-rotational MQS(v) exists if $v \equiv 0 \pmod{4}$, $k \equiv 3 \pmod{6}$ and $v \equiv 1 \pmod{k}$. Combining this fact with Lemma 2.1, we have:

Theorem 2.1. If k = 1 or k is even, then a k-rotational MQS(v) exists if and only if $v \equiv 1 \pmod{4}$ and $v \equiv 1 \pmod{k}$. If $k \equiv 3 \pmod{6}$, then a k-rotational MQS(v) exists if and only if $v \equiv 0$ or $1 \pmod{4}$ and $v \equiv 1 \pmod{k}$.

We leave the question of k-rotational MQS(v)s open for $k \equiv 1$ or 5 (mod 6), k > 1 and $v \equiv 0 \pmod{4}$.

3 Transrotational and Near-Rotational Mendelsohn Triple Sys-

In this section we give necessary and sufficient conditions for the existence of a k-transrotational MTS(v) for $k \equiv 1, 2$ or 3 (mod 4) and for the existence

of a k-near- rotational MTS(v) for all k. First we consider 1-transrotational MTS(v) with the point-set $\{\infty, a, b\} \cup Z_N$ where the automorphism is $\pi = (\infty)(a, b)(0, 1, ..., (N-1))$.

Lemma 3.1. If a k-transrotational MTS(v) exists, then $v \equiv 3 \pmod{2k}$.

Proof: There must be some block of such a system of the form [a, x, y] where $x, y \in Z_N \times Z_k$. Applying π^N to this block, we see that $[\pi^N(a), x, y]$ is also a block of the system. So $\pi^N(a) = a$ and N must be even and the result follows.

Lemma 3.2. If $v \equiv 1$ or 3 (mod 6) then there exists a 1-transrotational MTS(v).

Proof: We consider three cases.

case 1. Suppose $v \equiv 1 \pmod{6}$, say v = 6t + 1. Consider the blocks:

$$[\infty, 0, 3t-1], [a, 0, 3t-2], [b, 0, 3t], [\infty, a, b],$$

 $[0, (1+i), (t+1+2i)]$ for $i = 0, 1, ..., t-2$, and
 $[0, (2t-1+i), (7t-2+2i)]$ for $i = 0, 1, ..., t-2$.

case 2. Suppose $v \equiv 3 \pmod{12}$, say v = 12t + 3. Consider the blocks:

$$[\infty, 0, 2t], [a, 0, t], [b, 0, 3t], [\infty, a, b], [0, 4t, 8t], [0, 8t, 4t], and [0, (1+i), (2t+2+2i)] for $i = 0, 1, \ldots, t-2, t, t+1, \ldots, 2t-2$, and $[0, (4t+1+i), (14t+1+2i)]$ for $i = 0, 1, \ldots, 2t-1$.$$

case 3. Suppose $v \equiv 9 \pmod{12}$, say v = 12t + 9. Consider the blocks:

$$[\infty, 0, (2t+1)], [a, 0, (5t+3)], [b, 0, (11t+5)], [\infty, a, b],$$

 $[0, (4t+2), (8t+4)], [0, (8t+4), (4t+2)],$
 $[0, (1+i), (2t+3+2i)]$ for $i = 0, 1, \ldots, 2t-1$, and
 $[0, (4t+3+i), (2t+2+2i)]$ for $i = 0, 1, \ldots, t-1, t+1, t+2, \ldots, 2t$
(omit if $t = 0$ and let $i = 0, 2$ if $t = 1$).

In each case, the collection of blocks is a collection of base blocks for a 1-transrotational MTS(v) under π .

We now turn our attention to 2-transrotational MTS(v) on the point-set $\{\infty, a, b\} \cup Z_k \times Z_2$ where $k = \frac{v-3}{2}$ under the obvious automorphism. We will need the following structures. An (A, n)-system is a partitioning of the set $\{1, 2, \ldots, 2n\}$ into ordered pairs (a_r, b_r) such that $b_r = a_r + r$ for $r = 1, 2, \ldots, n$. An (A, n)-system exists if and only if $n \equiv 0$ or 1 (mod 4) [20]. A partitioning of the set $\{1, 2, \ldots, 2n - 1, 2n + 1\}$ into ordered pairs (a_r, b_r) such that $b_r = a_r + r$ for $r = 1, 2, \ldots, n$ is called a (B, n)-system

and exists if and only if $n \equiv 2$ or $3 \pmod{4}$ [13]. A (C,n)-system is a partitioning of the set $\{1,2,\ldots,n,n+2,n+3,\ldots,2n+1\}$ into distinct ordered pairs (a_r,b_r) such that $b_r=a_r+r$ for $r=1,2,\ldots,n$. A (C,n)-system exists if and only if $n \equiv 0$ or $3 \pmod{4}$ [18]. A partitioning of the set $\{1,2,\ldots,n,n+2,n+3,\ldots,2n,2n+2\}$ into ordered pairs (a_r,b_r) such that $b_r=a_r+r$ for $r=1,2,\ldots,n$ is called a (D,n)-system and exists if and only if $n \equiv 1$ or $2 \pmod{4}$, $n \neq 1$ [18]. Notice that for each of these systems, the set $\{r,a_r+r,b_r+r|r=1,2,\ldots,n\}$ includes all but two elements of the set $\{1,2,\ldots,3n+2\}$. It is this property of which we will take advantage.

Lemma 3.3. If $v \equiv 7 \pmod{12}$ then there exists a 2-transrotational MTS(v).

Proof: We consider four cases.

case 1. Suppose $v \equiv 7$ or 31 (mod 96), say v = 24t + 7 where $t \equiv 0$ or 1 (mod 4). Consider the blocks:

```
[\infty, a, b], [\infty, 0_0, 2_0], [\infty, 0_1, 2_1],
[0_0, (i+1)_1, (2i+1)_0] for i=0,1,\ldots,6t,
[0_1, (6t+1+i)_0, (1+2i)_1] for i=0,1,\ldots,6t,
[0_0, (2r)_0, (2b_r+2t)_0], [0_1, (2r)_1, (2b_r+2t)_1], [(2b_r+2t)_0, (2r)_0, 0_0],
[(2b_r+2t)_1, (2r)_1, 0_1] for r=2,3,\ldots,t where the b_r are from an (A,t) – system, and
[a, 0_0, (2a_1+2t)_0], [a, 0_1, (2a_1+2t)_1], [b, (2b_1+2t)_0, 0_0],
[b, (2b_1+2t)_1, 0_1], [(2b_1+2t)_0, 2_0, 0_0], [(2b_1+2t)_1, 2_1, 0_1] where a_1 and b_1 are from the (A,t) – system used above.
```

case 2. Suppose $v \equiv 55$ or 79 (mod 96), say v = 24t + 7 where $t \equiv 2$ or 3 (mod 4). Consider the blocks:

```
\begin{split} &[\infty,a,b], [\infty,0_0,2_0], [\infty,0_1,2_1], \\ &[0_0,(i+1)_1,(2i+1)_0] \text{ for } i=0,1,\ldots,6t, \\ &[0_1,(6t+1+i)_0,(1+2i)_1] \text{ for } i=0,1,\ldots,6t, \\ &[0_0,(2r)_0,(2b_r+2t)_0], [0_1,(2r)_1,(2b_r+2t)_1], [(2b_r+2t)_0,(2r)_0,0_0], \\ &[(2b_r+2t)_1,(2r)_1,0_1] \text{ for } r=2,3,\ldots,t \text{ where the } b_r \text{ are from a } (B,t)-\text{system, and} \\ &[a,0_0,(2a_1+2t)_0], [a,0_1,(2a_1+2t)_1], [b,(2b_1+2t)_0,0_0], \\ &[b,(2b_1+2t)_1,0_1], [(2b_1+2t)_0,2_0,0_0], [(2b_1+2t)_1,2_1,0_1] \\ &\text{ where } a_1 \text{ and } b_1 \text{ are from the } (B,t)-\text{system used above.} \end{split}
```

case 3. Suppose $v \equiv 19$ or 43 (mod 96), say v = 24t + 19 where $t \equiv 0$ or 1 (mod 4). Consider the blocks:

$$[\infty, a, b], [\infty, 0_0, (6t+4)_0], [\infty, 0_1, (6t+4)_1],$$
 $[0_0, (i+1)_1, (2i+1)_0]$ for $i = 0, 1, \ldots, 6t+3$,
 $[0_1, (6t+4+i)_0, (1+2i)_1]$ for $i = 0, 1, \ldots, 6t+3$,
 $[0_0, (2r)_0, (2b_r+2t)_0], [0_1, (2r)_1, (2b_r+2t)_1], [(2b_r+2t)_0, (2r)_0, 0_0],$
 $[(2b_r+2t)_1, (2r)_1, 0_1]$ for $r = 1, 2, \ldots, t$ where the b_r are from an (A, t) - system, and
 $[a, 0_0, (6t+2)_0], [a, 0_1, (6t+2)_1], [b, 0_0, (6t+6)_0], [b, 0_1, (6t+6)_1].$

case 4. Suppose $v \equiv 67$ or 91 (mod 96), say v = 24t + 19 where $t \equiv 2$ or 3 (mod 4). Consider the blocks:

$$[\infty, a, b], [\infty, 0_0, (6t+4)_0], [\infty, 0_1, (6t+4)_1],$$
 $[0_0, (i+1)_1, (2i+1)_0]$ for $i = 0, 1, \dots, 6t+3$,
 $[0_1, (6t+4+i)_0, (1+2i)_1]$ for $i = 0, 1, \dots, 6t+3$,
 $[0_0, (2r)_0, (2b_r+2t)_0], [0_1, (2r)_1, (2b_r+2t)_1], [(2b_r+2t)_0, (2r)_0, 0_0],$
 $[(2b_r+2t)_1, (2r)_1, 0_1]$ for $r = 1, 2, \dots, t$ where the b_r are from a (B, t) - system, and
 $[a, 0_0, (6t)_0], [a, 0_1, (6t)_1], [b, 0_0, (6t+8)_0], [b, 0_1, (6t+8)_1].$

In either case, the collection of blocks is a collection of base blocks for a 2-transrotational MTS(v) under π .

Lemma 3.4. If $v \equiv 3 \pmod{24}$ then there exists a 2-transrotational MTS(v).

Proof: Suppose v = 24t + 3. Consider the blocks:

$$[\infty, a, b], [a, 0_0, (3t)_1], [a, 0_1, (3t)_0], [b, 0_0, (9t)_1], [b, 0_1, (9t)_0], [0_0, (8t)_0, (4t)_0], \\ [\infty, 0_1, ((t-1)/2)_0] \text{ and} [\infty, 0_0, ((7t+1)/2)_1] \text{ (omit these blocks if } t \text{ is even}), \\ [\infty, 0_1, ((13t)/2)_0] \text{ and} [\infty, 0_0, ((19t)/2)_1] \text{ (omit these blocks if } t \text{ is odd}), \\ [0_0, (1+i)_0, (9t+1+2i)_0] \text{and} [0_1, (1+i)_1, (9t+1+2i)_1] \\ \text{ for } i=0,1,\ldots,t-1, \\ [0_0, (10t+i)_0, (9t+2i)_0] \text{and} [0_1, (10t+i)_1, (9t+2i)_1] \text{ for } i=0,1,\ldots,t-1, \\ [0_0, i_1, (9t-1-i)_1] \text{ for } i=0,1,\ldots,3t-1, \\ [0_0, (6t+1+i)_1, (3t-1-i)_1] \text{ for } i=0,1,\ldots,3t-2, \\ [0_1, i_0, (9t-1-i)_0] \text{ for } i=0,1,\ldots,3t-1 \text{ (omit } i=(t-1)/2 \text{ if } t \text{ is odd}), \text{ and } \\ [0_1, (6t+1+i)_0, (3t-1-i)_0] \text{ for } i=0,1,\ldots,3t-2 \text{ (omit } i=(t-2)/2 \\ \text{ if } t \text{ is even}). \\ \end{cases}$$

This collection of blocks is a collection of base blocks for a 2-transrotational MTS(v) under π .

Lemma 3.5. If $v \equiv 15 \pmod{24}$ then there exists a 2-transrotational MTS(v).

Proof: We consider four cases.

case 1. Suppose v = 15. Consider the blocks:

$$[\infty, a, b], [\infty, 0_0, 0_1], [\infty, 0_1, 4_0], [a, 0_0, 1_1], [b, 0_0, 5_1], [a, 0_1, 1_0], [b, 0_1, 5_0], [0_0, 3_0, 1_0], [0_1, 3_1, 1_1], [0_0, 2_0, 4_0], [0_0, 2_1, 5_0], [0_1, 2_0, 5_1], and [0_1, 0_0, 4_1].$$

case 2. Suppose v = 39. Consider the blocks:

$$[\infty, a, b], [\infty, 0_0, 0_1], [\infty, 0_1, 10_0], [a, 0_0, 14_0], [b, 0_0, 16_0], [a, 0_1, 4_1], [b, 0_1, 16_1], [0_0, 1_0, 7_0], [0_0, 2_0, 9_0], [0_0, 3_0, 8_0], [0_0, 8_0, 3_0], [0_0, 12_0, 6_0], [0_0, 10_1, 1_0], [0_0, 16_1, 14_0],$$

$$[0_1, i_0, (2i+1)_1]$$
 for $i = 0, 1, ..., 8$, and $[0_1, (11+i)_0, (4+2i)_1]$ for $i = 0, 1, 2, 3, 4, 6$.

case 3. Suppose $v \equiv 15$ or 87 (mod 96), $v \geq 87$, say v = 24t + 15 where $t \equiv 0$ or 3 (mod 4) and $t \geq 3$. Consider the blocks:

$$[\infty, 0_0, (8t+4)_0], [\infty, 0_1, (8t+4)_1],$$

 $[\infty, a, b], [a, 0_0, 0_1], [a, 0_0, (2t+2)_1], [b, 0_1, (2t+1)_0], [b, 0_1, (12t+5)_0],$
 $[0_0, 1_0, (4t+3)_0], [0_1, (4t+2)_1, (8t+4)_1], [0_1, (6t+2)_0, (12t+5)_1],$
 $[0_0, (i+1)_1, (2i+1)_0]$ for $i = 0, 1, \dots, 2t, 2t+2, 2t+3, \dots, 6t+1,$
 $[0_1, (6t+3+i)_0, (1+2i)_1]$ for $i = 0, 1, \dots, 6t+1,$ and
 $[0_0, (2r)_0, (2b_r+2t)_0], [0_1, (2r)_1, (2b_r+2t)_1], [(2b_r+2t)_0, (2r)_0, 0_0],$
 $[(2b_r+2t)_1, (2r)_1, 0_1]$ for $r = 1, 2, \dots, t$ where the b_r are from a (C, t) – system.

case 4. Suppose $v \equiv 39$ or 63 (mod 96), $v \geq 63$, say v = 24t + 15 where $t \equiv 1$ or 2 (mod 4) and $t \geq 2$. Consider the blocks:

$$[\infty, 0_0, (8t+4)_0], [\infty, 0_1, (8t+4)_1],$$

$$[\infty, a, b], [a, 0_0, 0_1], [a, 0_0, (2t+2)_1], [b, 0_1, (2t+1)_0], [b, 0_1, (12t+5)_0],$$

$$[0_0, 1_0, (4t+3)_0], [0_1, (4t+2)_1, (8t+4)_1], [0_1, (6t+2)_0, (12t+5)_1],$$

$$[0_0, (i+1)_1, (2i+1)_0] \text{ for } i = 0, 1, \dots, 2t, 2t+2, 2t+3, \dots, 6t+1,$$

$$[0_1, (6t+3+i)_0, (1+2i)_1] \text{ for } i = 0, 1, \dots, 6t+1, \text{ and}$$

$$[0_0, (2r)_0, (2b_r+2t)_0], [0_1, (2r)_1, (2b_r+2t)_1], [(2b_r+2t)_0, (2r)_0, 0_0],$$

$$[(2b_r+2t)_1, (2r)_1, 0_1] \text{ for } r = 1, 2, \dots, t \text{ where the } b_r \text{ are from a}$$

$$(D, t) - \text{system.}$$

In each case, the collection of blocks is a collection of base blocks for a 2-transrotational MTS(v) under π .

Notice that Lemmas 3.1 and 3.3-3.5 combine to tell us that a 2-transrotational MTS(v) exists if and only if $v \equiv 3$ or 7 (mod 12). By taking odd powers of automorphisms, the results of this section give:

Theorem 3.1. If $k \equiv 1, 2, \text{ or } 3 \pmod{4}$ then a k-transrotational MTS(v) exists if and only if $v \equiv 0$ or $1 \pmod{3}$ and $v \equiv 3 \pmod{2k}$.

We now consider near-rotational MTSs. If $v \equiv 1$ or 3 (mod 6) then a 1-near-rotational MTS(v) has the base block given in Lemma 3.2 under the automorphism $(\infty)(a)(b)(0,1,\ldots,v-4)$. This fact along with the following lemma give the sufficient conditions for the existence of a 1-near-rotational MTS(v).

Lemma 3.7. If $v \equiv 0$ or 4 (mod 6), $v \neq 12$ then there exists a 1-near-rotational MTS(v).

Proof: If $v \equiv 0$ or 4 (mod 6), $v \neq 12$, then there exists a cyclic MTS(v-3). Let β be a set of base blocks for such a system on the point set Z_{v-3} under the automorphism $(0,1,\ldots,v-4)$. With $[x,y,z]\in\beta$, associate the differences $\delta_1=(y-x) \pmod{v-3}, \ \delta_2=(z-y) \pmod{v-3}$ and $\delta_3 = (x-z) \pmod{v-3}$. Then it is necessary that $\delta_1 + \delta_2 + \delta_3 \equiv 0$ (mod v-3). If $v\equiv 4\pmod{6}$, then δ_1,δ_2 and δ_3 are distinct. If $v\equiv 0$ (mod 6) then one block of β may have associated differences that satisfy $\delta_1 = \delta_2 = \delta_3 = \frac{v-3}{3}$ and another block may have differences satisfying the condition $\delta_1 = \delta_2 = \delta_3 = \frac{2(\nu-3)}{3}$. These two base blocks are said to be short orbit blocks since the lengths of their orbits are $\frac{1}{3}$ the lengths of the orbits of any other base block of this system. To construct a 1-near-rotational MTS(v), consider the set $\beta/\{b\}$ where b is any element of β other than a short orbit block. Let d_1, d_2, d_3 be the differences associated with b. The set $\beta \cup \{[\infty_1, \infty_2, \infty_3], [\infty_3, \infty_2, \infty_1], [\infty_1, 0, d_1], [\infty_2, 0, d_2], [\infty_3, 0, d_3]\}/\{b\}$ is a set of base blocks for a 1-near-rotational MTS(v) on $\{\infty_1, \infty_2, \infty_3\} \cup Z_{v-3}$ under the automorphism $(\infty_1)(\infty_2)(\infty_3)(0, 1, \dots, v-4)$.

A 1-near-rotational MTS(12) is equivalent to partitioning the set of differences $\{1,2,4,5,7,8\}$ (the differences 3 and 6 being associated with short orbit blocks) into two sets $\{d_1,d_2,d_3\}$ and $\{d_4,d_5,d_6\}$ such that $d_1+d_2+d_3\equiv d_4+d_5+d_6\equiv 0\pmod{9}$. Clearly, this cannot be done and a 1-near-rotational MTS(12) does not exist.

By taking powers of the automorphism, the existence of 1-near-rotational *MTS*s gives us:

Theorem 3.2. A k-near-rotational MTS(v) exists if and only if $v \equiv 0$ or $1 \pmod{3}$, $v \neq 6$ and $v \equiv 3 \pmod{k}$ and if k = 1 then $v \neq 12$.

Proof: We need only to present a 3-near-rotational MTS(12). Consider the blocks:

```
\begin{split} &[\infty_1,\infty_2,\infty_3], [\infty_3,\infty_2,\infty_1], [\infty_1,0_0,2_0], [\infty_1,0_1,2_1], [\infty_1,0_2,2_2] \\ &[\infty_2,0_0,0_1], [\infty_2,0_1,0_2], [\infty_2,0_2,0_0], [\infty_3,0_1,0_0], [\infty_3,0_2,0_1], [\infty_3,0_0,0_2], \\ &[0_0,1_0,2_0], [0_1,1_1,2_1], [0_2,1_2,2_2], [0_0,1_1,2_2], [2_2,1_1,0_0], [0_0,2_1,1_2], \\ &\text{and } [1_2,2_1,0_0]. \end{split}
```

This is a collection of base blocks for a 3-near-rotational MTS(12) on the point-set $\{\infty_1, \infty_2, \infty_3\} \cup \{0, 1, 2\} \times \{0, 1, 2\}$ under the obvious automorphism.

4 Near-Rotational Mendelsohn Quadruple Systems

In general, we say that a MD(v,n) is k-near-rotational if it admits an automorphism consisting of w fixed points and k cycles of length $\frac{v-w}{k}$ where w is the order of the smallest nontrivial MD(v,n). It is fairly easy to see that the fixed points of an automorphism of a MD(v,n) form a subsystem and so by having an automorphism with w fixed points and k cycles of the same length, we are as "near" as possible to having a k-rotational MD(v,n). Therefore, with n=4 we say that a MQS(v) is k-near-rotational if it admits an automorphism consisting of 5 fixed points and k cycles of length $\frac{v-5}{k}$. In this section we give necessary and sufficient conditions for the existence of k-near-rotational MQSs for all k.

We consider 1-near-rotational MQS(v) on the point-set $\{\infty_1, \infty_2, \ldots, \infty_5\} \cup Z_{v-5}$ under the obvious automorphism.

Lemma 4.1. If $v \equiv 0 \pmod{4}$, $v \geq 16$ then there exists a 1-near-rotational MQS(v).

Proof: Suppose v = 4t. Consider the blocks:

$$[\infty_1, 0, (2t-7), (4t-13)], [\infty_2, 0, (2t-5), (4t-9)],$$

 $[\infty_3, 0, (2t-3), (4t-3)], [\infty_4, 0, (2t-1), (4t-3)],$
 $[\infty_5, 0, (2t+1), (4t+3)], \text{ and}$
 $[0, (2i+1), (4i+3), (4t-3+2i)] \text{ for } i = 0, 1, \dots, t-5$
(omit these blocks if $t = 4$).

These blocks along with the blocks for a MQS(5) on the points $\{\infty_1, \infty_2, \ldots, \infty_5\}$ form a collection of base blocks for a 1-near-rotational MQS(v) under the given automorphism.

Lemma 4.2. If $v \equiv 1 \pmod{4}$, $v \geq 17$ then there exists a 1-near-rotational MQS(v).

Proof: We consider three cases.

case 1. Suppose v = 17. Consider the blocks:

$$[\infty_1, 0, 1, 3], [\infty_2, 0, 4, 9], [\infty_3, 0, 6, 1], [\infty_4, 0, 8, 5], [\infty_5, 0, 10, 9],$$
 and $[0, 3, 6, 9].$

case 2. Suppose $v \equiv 1 \pmod 8$, say v = 8t + 1 where $t \ge 3$. Consider the blocks:

$$[\infty_1, 0, (4t-5), (8t-9)], [\infty_2, 0, (4t-3), (8t-5)], [\infty_3, 0, (4t-1), (8t-1)], [\infty_4, 0, (4t+1), (6t+1)], [\infty_5, 0, (6t-3), (4t-3)], [0, (2t-1), (4t-2), (6t-3)]$$
 and

$$[0,(2i+1),(4i+3),(8t-2+2i)]$$
 for $i=0,1,\ldots,t-2,t,t+1,\ldots,2t-4$.

case 3. Suppose $v \equiv 5 \pmod 8$, say v = 8t + 5 where $t \ge 2$. Consider the blocks:

$$[\infty_1, 0, (4t-3), (8t-5)], [\infty_2, 0, (4t-1), (8t-1)], [\infty_3, 0, (4t+1), (8t+3)], [\infty_4, 0, (4t+3), (6t+2)], [\infty_5, 0, (6t+1), (4t+1)], [0, 2t, 4t, 6t] and [0, (2i+1), (4i+3), (8t+2+2i)] for $i = 0, 1, \ldots, t-2, t, t+1, \ldots, 2t-3$.$$

In both cases, these blocks along with the blocks for a MQS(5) on the point-set $\{\infty_1, \ldots, \infty_5\}$ form a collection of base blocks for a 1-near-rotational MQS(v) under the given automorphism.

Clearly, a k-near-rotational MQS(v) does not exist for v < 16. Therefore, as in the previous sections, Lernmas 4.1 and 4.2 give us:

Theorem 4.1. A k-near-rotational MQS(v) exists if and only if $v \equiv 0$ or $1 \pmod{4}$, $v \geq 16$ and $v \equiv 5 \pmod{k}$.

Acknowledgements

The authors wish to express their gratitude to the referee for useful suggestions.

References

- [1] J.C. Bermond and V. Faber, Decompositions of the complete directed graph into k-circuits, J. Combine. Th. Ser. B 21 (1976), 146-155.
- [2] J.C. Bermond, C. Huang and D. Sotteau, Balanced cycle and circuit designs: even cases, Ars Combinatoria 5 (1978), 293-318.
- [3] J.C. Bermond and D. Sotteau, Graph decompositions and G-designs, Proc. 5th British Combinatorial Conference (1975), 53-72.

- [4] J.C. Bermond and D. Sotteau, Balanced cycle and circuit designs: odd cases, *Proc. Colloq. Oberhof Illmenau* (1978), 11-32.
- [5] R. Calahan and R. Gardner, 3-Transrotational Steiner Triple Systems, Congressus Numerantium 81 (1991), 65-68.
- [6] C.J. Cho, Rotational Steiner triple systems, *Discrete Math.* 42 (1982), 153-159.
- [7] C.J. Cho, Rotational Mendelsohn triple systems, Kyungpook Math. J. 20 (1986), 5-9.
- [8] C.J. Colbourn and M.J. Colbourn, Disjoint cyclic Mendelsohn triple systems, Ars Combinatoria 11 (1981), 3-8.
- [9] R. Gardner, Steiner Triple Systems with Near-Rotational Automorphisms, J. Combin. Th. Ser. A 61(2) (1992), 322-327.
- [10] R. Gardner, Steiner Triple Systems with Transrotational Automorphisms, *Discrete Math.*, to appear.
- [11] R. Mathon and A. Rosa, A census of Mendelsohn triple systems of order nine, Ars Combinatoria 4 (1977), 309-315.
- [12] N.S. Mendelsohn, A natural generalization of Steiner triple systems, "Computers in Number Theory," eds. A.O. Atkins and B. Birch, Academic Press, London, 1971.
- [13] E.S. O'Keffe, Verification of a conjecture of Th. Skolem, Math. Scand. 9 (1961), 80-82.
- [14] B. Micale and M. Pennisi, Cyclic Mendelsohn quadruple systems, Ars Combinatoria 35 (1993), 225–236.
- [15] R. Peltesohn, A solution to both of Heffter's difference problems (in German), Compositio Math. 6 (1939), 251-257.
- [16] M. Pennisi, On the rotational Mendelsohn designs, J. Combinatorics, Information and Systems Sciences, to appear.
- [17] K. T. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, *Discrete Math.* 33 (1981), 57-66.
- [18] A. Rosa, Poznamka o cyklickych Steinerovych systemoch trojic, *Math. Fyz. Cas.* **16** (1966), 285–290.
- [19] J. Schonheim, Partition of the edges of the directed complete graph into 4-cycles, *Discrete Math.* 11 (1975), 67-70.
- [20] T. Skolem, On certain distributions of integers in pairs with given differences, *Math. Scand.* 5 (1957), 57-68.