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Abstract. Decompositions of the complete digraph into isomorphic
coples of orientations of 4-cycles and 5-cycles are considered. Nec-
essary and sufficient conditions for such decompositions admitting
cyclic or rotational automorphisms are given. Some new decomposi-
tions of the complete digraph into certain (non-self-converse) orienta-
tions of the 6-cycle are also given. The spectrum of 4-, 6-, and 8-cycle
systems admitting either a reverse automorphism or a k—~rotational
sutomorphism for any k are determined.

1 Introduction

Let D, denote the complete digraph on v vertices. If g is'a digraph, then a g-decompo-
sition of D, is a set v = {g1,92,...,gn} of arc-disjoint subgraphs of D, each of which

is isomorphic to g and such that | J A(g:) = A(D,), where A(G) is the arc set of

digraph G. Several of these deoo‘m;)ositions are equivalent to block designs. For
example, a Dy—decomposition of D, is equivalent to a Steiner triple system of order
v. A k—circuit decomposition of D, is equivalent to a k—Mendelsohn design of order
v, denoted M (k,v). .

There are two orientations of the 3-cycle: the 3-circuit and the digraph (called a
“transitive triple”):

a b

A decomposition of D, into 3-circuits is equivalent to a Mendelsohn triple system of
order v {or a M(3,v)) which exists if and only if v = 0 or 1 (mod 3), v # 6 [14]. A
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decompﬁgi};idﬁ of D, into franéi'.til\re 'triple_s is equivalent to a directed -tripléusystem of
order v, which exists if and only if v =0 or 1 (mod 3) [11].
There are four orientations of the 4-cycle: the 4-circuit and the following

b c b ' c b -
a d a d a d
X Y Z
We represent X as [a,b,¢,d];, Y as [a,b,¢,d],, and Z as [a,b,¢,d];. A M(4,v) exists
if and only if v = 0 or 1 (mod 4), v # 4 {23]. A X —decomposition of D, exists if
and only if v = 0 or 1 (mod 4), v # 5, a Y —decomposition of D, exists if and only
ifv=0o0r ! (mod4), v ¢ {4,5}, and a Z—decomposition of D, exists if and only if

v =1 (mod 4) [10].
There are four orientations of the 5-cycle: the 5-circuit and the following

c , c
de | | b.d
a e a e '

d,el;, fori = 1,2,3. A M(5,v) exists if and o'r;ﬂy-ifv =0or

[+

a [

A,

We represent. A; as [a, b, ¢;

~ 1 (mod 5) [2). This is also the spectrum of an A;—decomposition of D, for i =1,2,3

[1]. .
A digraph d is said to be self-converse if reversing each of the arcs produces a
digraph isomorphic to d: Each of the orientations of the 3-cycle, 4-cycle and 5-cycle

“are self-converse. These are the only cycles for which each orientation is self-converse

[9]. Varma [26] gave necessary and sufficient conditions for the decomposition of D,
into self-converse orientations of 6-cycles, 7-cycles and 8-cycles. '* ~ -

An automorphism of a digraph decomposition of I, is a permutation of the vertex
set of D, which fixes the collection of isomorphic digraphs in the decomposition. A
decomposition of D, admitting an automorphism consisting of a cycle of length v is
said to be cyclic. A decomposition of D, admitting an automorphism consisting of a
fixed point and a cycle of length v —1 is said to be rotational. Necessary and sufficient
conditions are known for the existence of cyclic Mk, v)s for k = 3,4,5,6,7,8[6,15,16].
Necessary and sufficient conditions are known for the existence of rotational M (k,v)s
for k = 3,4,5 [4,18]. Cyclic directed triple systems exist if and only if v = 1, 4, or
7 (mod 12) [7] and rotational directed triple systems exist if and only if v = 0 (mod
3) {5]. The purpose of this paper is to explore cyclic and rotational automorphisms
of decompositions of D, into orientations of 4-cycles and 5-cycles. In addition, we

.
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address the existence question for decompositions.of D, into copies of the non-self-
converse orientations of the 6-cycle. Finally, we present some related results for cycle
systems (i.e. decompositions of the complete graph into cycles of a given length}.

2 Cyclic Decompositions

In this section, we give necessary and sufficient conditions for the existence of cyclic
decompositions of D, into orientations of 4-cycles and 5-cycles. Throughout this
section, we assume D, has vertex set Z, and the automorphism is the permutation
a=(0,1,...,uv—1). With each arc (a, b) of D, we associate a difference of b—a (mod
v). The existence of a cyclic X —decomposition and of a cyclic Y —decomposition
of D, implies a partitioning of the set of differences {1,2,...,v ~ 1} into difference
4-tuples (d;, d;, dk, di) such that -

di + d; + dy = d; (mod v) for X —decompositions, or

d; + d; = dy + d; {mod v) for Y —~decompositions.
Therefore, a necessary condition for either such decomposition is that v —1 = 0 (mod
4). We show this condition is sufficient in the next two theorems.

Theorem 2.1 A cyclic X —decomposition o_fD exists if and only if v =1 (mod 4),
v #5.

Proof. We consider two cases.
Case 1. Suppose v = 1 (mod 8), say v = 8¢t 4 1. Consider the blocks:
0,1 +2,6t+2+2,2t4+ 144, fori=0,1,...,t =1, and
0,24+ 1+4,142,5t+1+1i], for: =0,1,...,¢t— L
Case 2. Suppose v =5 (mod 8), say v = 8¢ + 5, ¢ > 0. Consider the blocks:
[012t+34t+6]x,[02+z12t+5+22]zforz—01 .,t, and
[0t+3+214t+8+22],,forz—01 2(omlt1ft—1) :
In both cases, the blocks along with their i 1mages under a, form a cyclic X-decomposi-
tion of D,. -
NTA S
Theorem 2.2 A cyclic Y —decomposition of D, ezists if and only if v = 1 (mod 4),
v 75 5 )

Proof Suppose v =41+ 1,1t > 1. Consider the blocks:
(0,2t — 1,2t -2, 4t——l]y,a.nd 0,1 4+4,4t—1,2t +1+41], fori=0,1,...,0=2.
These blocks, along with their images under o, form a cyclic Y- decomp051t10n of D,.

[
Theorem 2.3 A cyclic Z—decomposition of D, ezists if and only if v=1 (mod 4).

Proof. The necessary conditions follow from the spectrum of a Z —decomposition of

D,. Suppose v = | (mod 4), say v = 4{ 4+ 1. Consider the blocks:
(0,144, 26424 24,2t + 1 1), for i =0,1,...,f~ 1.

These blocks, along with their images under a, form a cyclic Z-decomposition of D,.
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We now turn our attention to the existence of cyclic A;—decompositions of D for
i=1,2,3. We have as a necessary condition:

Lemma 2.1 If a cyclic Ai—decomposition of D, exists, where i = 1,2,3, thenv =
1,11, or 16 (mod 20). _

Proof. The existence of such a decomposition implies a partitioning of the set of
differences {1,2,...,v — 1} into difference 5-tuples (d;, d;, dx, di, dm) such that .

d; + d; + di = di + dm (mod v) for A;— and Ap—decompositions, or

d; + d; + di + di = dmm (mod v) for As—decompositions.
Therefore, v — 1 = 0 (mod 5) is necessary. Notice that from the above condition
on the difference 5-tuples, we can partition the difference set into two sets A and B
such that the sum of the elements of A is congruent to the sum of the elements of
B modulo v. That is, there exists a and b such that a + b = @ and a = b (mod
v). But if v = 6 (mod 20}, say v = 20t + 6, then a + b = (20¢ + 5)(10¢ + 3) which
is odd. But if @ = b (mod 20t + 6) then a -+ b is even. Therefore v = 6 (mod 20) is
not possible and the necessary conditions for such a system are v = 1, 11, or 16 (mod

20). |
We now show the necessary conditions of Lemma 2.1 are also sufficient.

Theorem 2.4 A eyclic Aj—decomposition of D, exists if and only ifv=1,11, or 16
(mod 5). .

Proof. We consider two cases.
Case 1. Suppose v = 1 (mod 10), say v = 10t 4 1. Consider the blocks:
[0,1 44,5 + 1,4t — 4,4t — 1 — 2i]; for i=0,1,...,t — 1, and
(0,2t + 2 + 24, 7t+3+3t,8t+4+4z,6t+2+21]1 fori=90,1,...,t — 1.

Case 2. Suppose v = 16 (mod 20), say v = 20t + 16. Consider the blocks
[0,20¢ + 14 — 24, Tt + 4 — i,20t + 15,1+ 2i); for i = 0,1,...,2t — 1 (omit if ¢ = 0),
(0,4t + 3,18t + 9,8t +4,4¢ + 1];, [0, 4¢ + 2,19t + 14, Ot + 6, 5¢ + 4,

(0,10t + 9 + 4,3t + 3,10t + 8 — £,20¢ 4 15 — 24]; for 1 =0, 1,...,¢, and
[0,5¢ +3 — i, 17t + 12 — 2,19t + 15, 14f + 12 + 4] forz‘=0,1,...,t—1 (omit if

t=20).
In both cases, the blocks, along with their images under «, form a cyclic A,-decompo-
sition of D,,. |

Theorem 2.5 A cyclic Ay—decomposition of D, exists if and only if v = 1,11, or 16
(mod 5).

Proof. We consider two cases.

Case 1. Suppose v =1 (mod 10), say v = 10f 4 1. Consider the blocks:
[0,1+14,5¢+1,5t—4,4t —1—2i) fori=0,1,...,t — 1, and
[02t+2+2z,7t+3+31 5t + 141, 6t+2+21]2forz—01 t—1

Case 2. Suppose v = 16 (mod 20), say v = 20¢ + 16. Consider the blocks
[0,20f + 14 — 20,7t +4 — 4, Tt +6+4,Tt + 5 —ifp for i = 0,1,...,2t — 1 (omit if

t = 0), [0,4t + 3,13t + 9,9 + 6,4t + 1], [0, 16¢ + 14,11¢ + 10, 15¢ + 12, 5¢ + ),
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[0,10t + 9 4,32+ 3,13t +10 — 4,13t + 11 + ), for i = 0,1,...,%, and
[0,15¢+ 1344, 7t +6, 12 +9 — 4, 18¢ + 13 — 2] for £ = 0, 1,...,¢— 1 (omit if ¢ = 0).
In both cases, the blocks, along with their images under ¢, form a cyclic A;-decompo-
sition of D,. ‘ ]

Theorem 2.6 A cyclic As—decomposition of D, ezists if and only if v = 1,11, or 16
(mod 5).

Proof. We consider two cases.

Case 1. Suppose v = 1 (mod 10), say v = 10¢ + 1. Consider the blocks:
0,1 +4,t+2+2¢,5t+ 1,5t —d]s for i =0,1,...,¢~ 1, and
(0,2t +2+26,t + 144, TE+3+34,58+1+dafori=0,1,...,t—1.

Cage 2. Suppose v = 16 {mod 20), say v = 20t + 16. Consider the blocks:
(0,1 + 24,20t + 15,TE +4 — 8, Tt + 6+ i]s for £ = 0,1,...,2{ =1 (omit if t = 0),
0,4t + 1,8t + 4,13t + 9,9t + 6]3, (0,5t + 4,9 + 6,192 + 14, 15¢ + 12]5,
(0,20 4 15 — 21,10 + 8 — §,3¢ + 3,13t 4+ 10 — s for i = 0,1,...,4, and
(0,148 + 12 +14,19¢ + 15,17¢ + 12 = 24,12t + 9 — i]3 for § = 0,1,...,¢t — 1 (omit if

t=10).
In both cases, the blocks, along with their images under a, form a cyclic A3-decompo-
sition of D,,. |

We now consider the cyclic decomposition of D, into the following orientations of
the 6-cycle:
j c d

a B f a B, f

We represent B as [a,b,¢,d,¢, f|; and B, as [a,b,¢,d, ¢; f];. Neither of these orien-
tations is self-converse. However, By is the converse of B;. Necessary and sufficient
conditions are known for the decompositions of [}, into the remaining orientations of
the 6-cycle (each of which is self-converse) [26]. Necessary conditions for the existence
of By— or B,~decompositions of D, are that v =0, 1, or 3 (mod 6).

Theorem 2.7 A cyclic By~decomposition of D, ezists if and only if v=1 (mod 6).

Proof. As above, a necessary condition for such a system is that the number of
differences be divisible by 6. That is, v = 1 {mod 6) is necessary. We show sufficiency
in three cases.
Case 1. Suppose v = 1 (mod 12), say v = 12¢ + 1. Consider the blocks:

0,1+ 12i,4 + 245,2 + 124,9 + 244, 5 + 12i); for i = 0,1,...,¢ ~ 1, and

[0,6 4 124,16 + 244, 8 + 124,20 + 244,11 + 124); for i = 0,1,...,¢ — L.
Case 2. Suppose v = 7 (mod 24), say v = 24t + 7. Consider the blocks:

0,1 + 124,6 + 24,3 + 124,10 -+ 244,4 + 123}, for i =0,1,...,¢ — 1 (omit if ¢ = 0),

69



(0,8 127,18 + 244,94 121,23 + 247,12 +12¢]; for i = 0,1,...,¢t —1 (omit if ¢ = 0),
(0,128 + 5 + 124,24 + 14 + 244,12t + 7 + 124,24¢ + 18 + 244,12t + 8 + 124); for
i=0,1,...,t — 1 (omit if £ = 0),
[0,12¢ 4+ 12 4 124,241 4 26 + 242,12t + 13 + 124, 24¢ + 31 + 244, 12¢ + 16 + 124], for
t=0,1,...,t =1 (omit if ¢ = 0), and [0,2,12¢ + 6, 3,12¢ + 4,24t + 5];.
Case 3. Suppose v = 19 (mod 24), say v = 24t + 19. Consider the blocks:
(0,14 12,6 +244,3 + 124,10 4 24¢,4 + 12i], for i = 0,1,...,¢,
[0,8 + 124,18+ 244,94+ 124,23 + 244,12+ 12i], for i = 0,1,...,¢ — 1 (omit if ¢ = 0},
(0,12¢ + 12 + 12¢, 24t 4 26 4 244,12t 4+ 13 + 12¢, 24¢ + 31 + 244, 12 + 16 + 121]; for
1=0,1,...,¢,
(0,12¢ + 17 + 124, 24¢ 4 38 + 244, 128 + 194 12¢, 24¢ + 42 + 244, 12¢ + 20 4 124); for
t=0,1,...,t ~ 1 (omit if t = 0), and [0,2,12¢ + 11,1,12¢ + 9, 24¢ + 17);.
In each case, the blocks, along with their images under o, form a cyclic B;-decomposi-
tion of D,. | |

Since B, is the converse of By, the existence of a cyclic By-decomposition of D, implies
the existence of a cyclic B, decomposition of I, (and conversely). We therefore have:

Theorem 2.8 A cyclic B,—decomposition of D, ezists if and only if v=1 (mod 6).
3 Rotational Decompositions

In this section, we give necessary and sufficient conditions for the existence of rota-
tional decompositions of D, into orientations of 4-cycles and 5-cycles. Throughout
this section, we assume D, has vertex set {c0}{JZ,_; and the automorphism is the
permutation 8 = (c0){0,1,...,v — 2). '

Lemma 3.1 If a rotational X — or Y —decomposition of D, ezists, then v = 0 (mod

0. |

Proof. The existence of a rotational X — or Y —decomposition of D, implies the
partitioning of the set of differences {1,2,...,v — 2} \ {d;,d;}, where 4, and d; are
two differences, into difference 4-tuples (d, d;, di, d;) such that

d; 4 d; + di = d; (mod v) for X —decompositions, or o

di + d; = di + di (mod v) for ¥ —decompositions. :
Therefore, a necessary condition for either such decomposition is that v —4 = 0 (mod

4). 1
We show this condition is sufficient in the next two theorems.

Theorem 3.1 A rotational X decomposition of D, exists if and only if v=0 (mod
4).
Proof. We consider two cases.

Case 1. Suppose v = 0 (mod 8), say v = 8¢. Consider the blocks:
(6t —1,00,0,6¢t —2],, [0,1 41,68+ 24,2t +1), fori=0,1,...,t -1, and
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[0,¢+1414,8t+ 25,5t — 141, for i =0,1,...,t ~2 (omit if = 1)
Case 2. Suppose v = 4 (mod 8), say v = 8t + 4. Con31der the blocks: ‘
- [1,00,0,6t + 2], [0,1 44,66+ 4 424,20 + 1 +d]; for e =0,1,...,¢ =1 (omit if
t=0), and
[0,¢+1+i,8t+442,5t+1+1];fori=0,1,...,t =1 (omit if ¢ = 0).
In both cases, the blocks, along with their images under the permutation 3, form a
rotational X-decomposition of D,. |

Theorem 3.2 4 rotational Y —decomposition of D, exists if and only if v=10 (mod
4), v # 4.

Proof. Suppose v = 0 (mod 4), say v = 4¢, ¢ > 2. Consider the blocks

[1, 00,4t — 30]y,and[01+z4t—-32t—1+z]yforz-01 -2.
_ These blocks along with their images under the permutatmn T = (oo)(O 1,...,4t-2),
form a Y-decomposition of D, where the point set of D, is {00} UZg-1.

We note that Theorems 2.1, 2.2, 2.3, 3.1, and 3.2 combine to give direct constructions
of X—, Y—, and Z—decompositions of D, for all admissible v,
Concerning rotational Z—decompositions of D, we have:

Theorem 3.3 A rotational Z—decomposition of D, does not ezist for dny v.

Proof. Such a system must have a block containing the fixed point co. So there
must be either a block of the form A = [a,00,b,¢], or B = [¢, a,00,b];. If we apply
4%=9 to block A, we get the arc (a,00) twice in the decomposition, a cont.ra.dlctlon If
we apply 8°~* to block B, we get the arc (0o, @) twice in the decomposition, another
contradiction. Therefore, a rotational Z-decomposition of D, does not exist. |

We now turn our attention to rotational A; decomposn‘.lons of D, fori=1,2,3.

Lemma 3.2 If a rotatwnal A decampas:twn of D, ezisls for = 1,2 or 3, then
v = 0 (mod 5) - :

Proof As in Lemma 3.1, the existence of such a decomposition implies a partltlonmg
of the set {1,2,...,v — 2} \ {d1,d;,ds} into difference 5-tuples such that
di+d;+dy=d+dp (modv—1)fori=1,2,0r ’
di + d; + dy + d = dny {mod v —1) for 1 = 3.
Therefore, a necessary condition for such a system is that v — 5 = 0 (mod 5), |

We show this condition is sufficient in the next three theorems.

Theorem 3.4 A rotational A;—decomposition of D, exists if and only if v =0 (mod
5).
Proof. We consider two cases.

Case 1. Suppose v = 0 {mod 10), say v = 10¢. Consider the blocks
(0,1 +¢,4t 41+ 24,7t 4+ 14 34,7t + 2] for : = 0,1,...,£ -1,
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0,6 +2+42i,7t +4,4t = 1,3t =3~ 2i]; for 1 =0,1,...,t —2 (omit if t = 1), and
[0, o0, Gt, 1, 3”1
Case 2. If v = 5, consider the block [0,0,2,3,1},. Next, suppose v = 5 (mod 10),
say v = 10t + 5, £ > 1. Consider the blocks:
0,6t +3—14,9t+4,66+4+4,14+2{); fori=0,1,...,t-1,
(0,4 + 24,78+ 7 +4,3,10t +3 — 21, for i =0,1,...,t — 2 {omit if ¢ = 1),
[0,6¢ 44,1 4+ 1,3t + 2,8t + 5]y, and [0, 00, 5¢ + 2, 5¢, 10t + 2],.
These blocks, along with their images under g, form a rotational 4,-decomposition
of D;. [ |

Theorem 3.5 A rotational Ay—decomposition of D, exists if and only if v =0 (mod

5).

Proof. We consider two cases. ,
Case 1. Suppose v = 0 (mod 10), say v = 10¢. Consider the blocks:
(0,1 44,48 + 1 42,46 +4, Tt + 2] for s = 0,1,...,£ — 1,
(0,6 +2+24, Tt 44,6 ~2—14,3t =3 ~2{], fori = 0,1,...,¢~2 (omit if = 1), and
(0,3t — 1,00,9¢ =~ 1, 3¢],.
Case 2. Suppose v = 5 (mod 10), say v = 10f + 5. Consider the blocks:
(0,3t 4+144,9t+4,3t+1+¢,3t -3y fori =0,1,...,¢~1,
(0,7t +3—4,T¢+T+4,7t+3—14,10t +3 —2i); for i = 0,1,...,t—2 (omit if ¢ = 1),
[0,6¢ +4,t + 1,6t + 4,8t + 5]2, and [0, 00,5t — 2, 5¢,10t + 2.
These blocks, along with their images under 8, form a rotational A;-decomposition
of D,,. I

Theorem 3.6 A rotational A3—decomposition of D, ezists if and only if v =0 (mod

5). - |

Proof. We consider two cases. = - '
Case 1. Suppose v = 0 (mod 10), say v = 10¢. Consider the blocks:
(0,6t —1,00,1,3t]s, {0,144, 7,4t + 1+ 2,4t + 4]y for i = 0,1,...,¢ ~ 1, and
(0,8 +2+2i,48 + 3+ 30, Tt +4,6t —2 —ify for i = 0,1,...,¢ — 2 (omit if ¢ = 1).
Case 2. If v = 5, consider the block [0,1,00,3,2]5. Next, suppose v = 5 (mod 10),
say v = 10t + 5, t > 1. Consider the blocks:
(0,1 4+2i,6¢+4+%,9t+4,3t+1+¢sfori=0,1,...,0—1,
0,106+ 8~ 24,10+ 7,7t + T4, 7t +3 =g for i = 0,1,...,£ — 2 (omit if ¢ = 1),
[0,8¢ +3,3t,8t + 3,61 + 4}, and [0, 00, 5t — 2, 5¢, 10¢ + 2.
These blocks, along with their images under 3, form a rotational As-decomposition

of D,. |

We note that Theorems 2.4, 2.5, 2.6, 3.4, 3.5 and 3.6 combine to give direct con-
structions of A;—decompositions of D, for all admissible v except for v = 6 (mod
20).

We now consider By— and B;—decompositions of D, which admit a rotational
automorphism. We have:
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Theorem 3.7 A rotational B,—decomposition of D, exists if and only ffv=0 (mod
6) : ) E R Aty

Proof. An argument similar to those in Lemmas 3.1 and 3.2 shows that v = 0 (mod
6) is necessary. For sufficiency, we consider two cases.
Case 1, Suppose v = 0 {mod 12), say v = 12¢. Consider the blocks
[0,1 + 124,4 + 24,2 4- 124,9 + 24,5+ 12i]; for i = 0, 1,. -1,
[0, 6+ 124, 16 + 244, 8+ 12, 20 + 244, 11.4-12i], for i =0, 1 t-2 (omit if ¢ = 1),
and [0, 0o, 12¢ — 8,12¢ — 3,12t — 5,12t — 2]1.
Case 2. If v = 6, consider the block [0,00,3,1,2,4];. Next suppose v = 6 (mod 12),
say v = 12t + 6, t > 1. Consider the blocks:
[0,1 + 124,4 + 24i,2 + 124,9 + 24§,5 + 12i]; for i = 0,1,...,t — 1,
[0,6 + 121,16 + 24¢,8 + 124,20 + 245,11 + 12i], for i =0,1,...,£ — 1, and
[0, 00,12¢ — 3,12t,12¢ — 1,12¢ + 1.
' In both cases, the blocks, along with their images under 8, form a rotational B;-
decomposition of D,,. ' |

Since B, is the converse of By, the existence of a rotational B,—decomposition of D,
implies the existence of a rotational B,—decomposition of D, (and conversely). We
therefore have:

Theorem 3.8 A rotatwnal By—decomposition of D, egists if and only if v =0 (mod
6).

We note that Theorems 2.7, 2.8, 3.7, and 3.8 combine to give the existence of a B-
or Bp-decomposition of D, when v =0 or 1 (mod 6). We leave the case v = 3 (mod

6) open.
4 Related Results For Cycle Systems

The decomposition of a graph is defined similarly to the decomposition of a digraph,
and an automorphism of a graph decomposition is analogous to an automorphism
of a digraph decomposition. An n—cycle system of order v, denoted nC’S(v), is a
decomposition of K, (the complete graph on v vertices) into cycles of length n. A
4CS(v) exists if and only if v = 1 (mod 8) [12], a 6CS(v) exists if and only if v = 1
or 19 (mod 12) [20], and an 8CS(v) exists if and only if v = 1 (mod 16)-[12}. For
a survey of results on cycle systems see [13]. A cyclic 3-cycle system (or Steiner
triple system) exists if and only if v = 1 or 3 (mod 6), v # 9 [17]. Cyclic cycle
systems in general are explored in [20] and [21]. We slightly generalize the idea of a
rotational automorphism by defining a k—rotational automorphism as one consisting
of a fixed point and k cycles each of length 2. k—rotational 3CS(v)s are explored
in [3, 19] in which the spectrum is determined for k = 1,2, 3,4, 6. An n—cycle system
is said to be reverse if it admits an automorphism consisting of a fixed point and
¥=! transpositions. A reverse 3CS(v) exists if and only if v =1, 3,9 or 19 (mod
24) [8, 22, 24, 25]. In this section, we give necessary and sufficient oondltlons for the
existence of k—rotational nCS(v)s and reverse nCS(v)s for all k and for n = 4,6,8.
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‘We consider k-rotational nCS(v)s on the point set {oco} U Zn X Zy, where N = ¥1|
and with automorphism 7, = (oo)(Oo, loy- ooy (N=1)g) » o+ (Ok=1, Limty o o oy (N —1}im1),
where we represent the ordered pair (z,y) € ZN X Zp 88 Zy.

We will represent the 4-cycle

. a b

d c
by any cyclic shift of (g, 5, ¢,d) or (d,¢,b,a). We have the following necessary condi-
tion: _ ~

Lemma 4.1 If a k-rotational 4CS(v) ezists, then k is even.

Proof. Suppose there is a k-rotational 4CS(v) with point set and automorphism
as described above. A set of n—cycles is said to be a set of base n—cycles for an
nCS(v) under the automorphism = if the images of the n—cycles under the powers
of  produce the nCS(v). For each i € Z, there must be exactly one 4-cycle in a
set of base 4-cycles under the automorphism 7, which contains the edge (0, a;), for
some a € Zy. Base 4-cycles containing oo must be of one of the following types:

1. {00, Zi, %1, 2;) where i # j, or

2. (00, i, Yj, 2m) Where 1, § and m are distinct.
Each of these types of 4-cycles contains exactly two edges of the form (oo, a;) where
a; € Zn % Zx. Therefore, k must be even.

Notice that the argument of Lemma 4.1 can be extended to show that if a k-rotational
nCS(v) exists where n is even, then k must be even.
We can now establish sufficiency. - o

Lemma 4 2 A 2- rotatzona! 4CS('U) exists zf and anly zf v= =1 (mod 8).

Proof. Suppose v 1 (mod 8), sa.y v =8+ 1 Let N = 4t Con31der the colIectlon
of 4-cycles: "

(00, 0o, 21, (2t)1) (00: to, (2t)0: (3t)0) (00: 0y, (2t)91 (2t)l)y (003 (3t)l| 133 (2t)0)a

(0,41, (20)1, (2t + 1)) for i'=1,2,...,t — 1 (omit if £ = 1), and

(0o, (4t — i}y, (2t)y,40) for i =1,2,...,¢t — 1 (omit if ¢ = 1).
These blocks, along with their images under 9, form a 2-rotational 4CS(v). [ |

The reéults of Lemmas 4.1 and 4.2 allow us to establish necessary and sufficient
conditions for the existence of a k-rotational 4C'S(v), for all k.

Theorem 4.1 A k-rotational 4C’S(v) exists 1f and only if v =1 (mod 8), k i3 even
andv=1 (mod k).

Proof. In light of Lemma 4.1, the necessary conditions follow trivially. Now suppose
v and k satisfy the stated hypotheses. Then there is a 2-rotational 4CS(v) admitting
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automorphism ;. Since v = 1 (mod k), we have 1r§/ ? = 1 and so the 2-rotational
4C8(v) is also k-rotational. ' Y |

Theorem 4.1 immediately classifies reverse 4CS(v)s:
Corollary 4.1 A reverse 4CS(v) exists if and only if v=1 (mod 8).

We will represent the 6-cycle

€ d

by any cydlic shift of (a,b,¢,d, €, f) or (f,e,d,¢,b,a). We now consider k-rotational
6CS(v)s. As with Lemma 4.1, a necessary condition for the existence of a k—rota-
tional 6CS(v) is that k is even.
We now establish sufficiency. In each of the constructions, we represent certain

blocks with the following notation:

A;{a, i) = (05, (a+6+12i);, (2a+8+241);, (3a-+8+361);, (2a+4+4-241);, (a+1+124);),

B;(b, 1) = (0;, (b+6+121);, (2b+10-+241);, (3b+10+-361);, (2b+5+24z),, (b+2+124);),

C(C,Z) = (00, (c+6+ 124)1, 20, (c+4+ 121)1, 1g,(c+ 1+ 12i), )

D(d, :) = (00, (d + 6 4 12i)y, 1g, (d + 5 + 124), 2, (d+ 2 +128);).

Lemma 4 3 If'u = 1 (mod 48) then there exists a 2- mtatwnal 6CS(v).

Proof. First, suppose that v = 49. Consider the oollect:on of 6-cycles
(o0, 30, 00, 21, 51, 111), (0o, 60, 101, 224, 185, 125), (O, 111,10,81,30,91), .-
(001817 80: 161: 160 01): (00) 11121!41110:20)9 0(12 0): D(17 0)!
(05, 4;,8;,124, 16;,20;) for j = 0,1, and B;(5,0) for j =0, 1.
Now suppose v = 1 (mod 48), say v = 48t + 1 where ¢ > 1. Consider the colIectlon
of 6-cycles: -
(00 30 00: 215 5h91)3 (00: 40 81: (].Qt + 8)1! (12t + 4)0a (12t)0)|
(00: (St)la (St)fh (lﬁt)ll (lﬁt)ﬂs 01) (003 In 21: 411 10: 20);
(OJ'! (4t);, (St)i: (12t)i, (16¢);, (ZOt)j) for j =0,1,
along with
Case 1. if t = 0 (mod 3), t.hé 6-cycles |
A;(5,1) fori=0,1,..., 52 for j = 0,1,
B(lOz)forz—Ol %‘Gforj-—(}l(omltift—ii)
(05, (4t + 4);, (8t + G)j, (12t + 7),, (8t + 1), (4t — 2)) for j =0, 1,
B;(4t +5,1) for i =0,1,...,%2 for j = 0,1,
As(4t +12,1) fori=0,1,.. g““forj-—()l
C(5,i) fori=0,1,..., %32 D(IO i) fori=20,1,..., 35,
(0, (8t + 6)3, 20, (8t + 5)1,40 (8t + 2)1), D(8t +5 z) fori=0,1,...,%2, and
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C(8t +12,3) for i =0,1,. ., 28,
Qas_e_z ift=1(mod 3),t¢ > 1 the 6-cycles
A;(5,7) for i=0,1,.. ,§ 4 for j=0,1,
By(10,i) for i =0,1,...,5" for j = 0,1 (omit if ¢ = 4),
(05, (4 +2);, (88);, (12t — 6);, (8 — 7);, (4¢ — 4),) for =0, 1,
(04, (4 + 7);, (8¢ + 13);, (12t + 12)j, (8t + T)y, (4t + 3);) for 7 = 0,1,
Aj{dt +8,8) fori=0,1,..., & % for §=0,1,
B;(4t +13,i) for i =0,1,.. ;5f0r3-~01
C(5,4) fori=0,1,.. 2‘3“5 D(10 i) for i=0,1,..., %5,
(0o, (8t + 3)1, 1o, (8t)1,30 (St + 1)), C(8t +4,1) for i=0,1,..., %%, and
D(8t+9,i) fori=0,1,..., %%
Case 3. if £ =2 (mod 3), the 6-cycles
A;(5,1) fori=0,1,...,52 for = 0,1 (omit if ¢ = 2),
B;(10,1) for i = 0,1,. %'5 for =0,1 (omit if t = 2),
(07, (4 + 3);, (8¢ + 2)5, (120, (8¢ — 2);, (4 — 3),) for 5 =0,1,
A4t +4,4) fori=0,1,..., %4 for =0, 1,
Bj(4t+9,i) fori=0,1,..., 2““ for j = 0,1,
C(5,4) fori =0,1,..., 24, D(10 i) fori= O ..., 2% (ormt if t = 2),
(0g, (8¢ + 2)1, 30, (8t)1,2o (8t 4)1), D(8t+1 z) for i= 0 1,..., %2 and
C(8t +8,4) for i =0,1,..., %=
In each case, the blocks, a.long w1th their images under 7, form a 2-rotational 6CS(v).
|

Lemma 4.4 If v=9 (mod 24) then there ezists a 2-rotational 6CS(v).

Proof. First, suppose that v = 9. Consider the collection of §-cycles:

(CXD, 00! 01! 10: 31) 21) and (00) 10: 21) Ol: 30 20)
Now, suppose vE =9 (mod 24), sa.y v= 24t + 9 where t> 0 Consider the collection
of 6-cycles:

(00 20 00 3]: 41’ 81): (00: 30 40: 61’ 31: 11) (001 91: 151, 70: 171: 60),

(0o, 40, 41, (6¢ + 6), (5t + 6)o, (6t + 2)o), (0o, 51, 101, 60,121, 50),

C(16,%) fori=0,1,. — 2 (omit if t = 1),
D(21,4) fori =0, @1 t—,2(oxmt1ft—-1),
along with :

Case LLift=1 (mod 2), the 6-cycles
(00,134,204, 80,221, 7o), A;(8,%) for i=0,1,...,%5% for § = 0,1 (omit if £ = 1),
and ' '
B;(13,8) for i=0,1,...,%2 for j = 0,1 (omit if ¢-= 1);
Case 2.ift =0 {mod 2), ¢ > 0 the 6-cycles
(00, 121,20],70,221, 80), Bj(7, 2) for i = 0, 1,..., t—;g for J = 0, 1, and
A;(14,4) for i =0,1,...,52 for j = 0,1 (omit if ¢ = 2).
In each case, the blocks, along with their images under m,, form a 2-rotational 6CS(v).

Lemma 4.5 If v =13 (mod 48) then there exists a 2-rotational 6CS(v).

Proof. First, suppose tha‘t_ v = 13. Consider the collection of blocks:
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(00 00120 01)11:31) (00:10:41111140 30) (00:11:20 31y40 51):
and (001 21:20 41s40 01)
Next, suppose that v = 61. Consider the collection of blocks:
(CXJ 30 00|21|511 91), (00:40 21113619190, 150) (00 51’111:40 101:60)|
(0o, 11,21, 41, 16, 20), (0o, 101, 100,201,200, 01), (0o, 91, 161, 40, 151, 7o),
(0,53, 10, 154, 20;, 25;) for j = 0,1, B;(8,0) for j = 0,1, (0, 141,23, 7,221, %),
C(18,0) for j = 0,1, and D(23, 0) forj 0,1.
Now, suppose v = 13 (mod 48), say v = 48t + 13 where ¢ > 1. Consider the collection
of 6-cyc1es
(OO 39, 00, 2y, 51:91), (00’40 21, (125 + 24)1: (12t + 7)0! (12t + 3)0):
(0o, L1, 21,41, 10, 20), (0o, (82 + 2)1, (8¢ + 2)a, (16t + 4)1, (16t + 4)o,0y),
(0, (4t + 1)y, (8¢ + 2);, (12t + 3);, (16t + 4);, (20t -+ 5);) for j = 0,1,
(0o, 51, 101, 60, 121, 50), (00,91, 151, 7o, 171, 60), (0o, 131,201, 80, 221,70).
along with
Case 1. if ¢ = 0 (mod 3), ¢ > 0, the 6-cycles -
A;(8,1) for i=0,1,...,%2 for j= 0,1, -
B;(13,4) for i=10,1,... ‘“‘5 for § = 0,1 (omit if ¢t = 3),
A(4t+3i)fori—01 ”“afor_y“Ol
B;(4t +8,1) for i = 0,1,.. 2“”‘brj 0,1, D(16,1) for i =0,1,..., %2,
C(23,7) fori =0,1,. 2‘ 0 (ormt ift = 3), (0g, (8¢+5)1, 1o, (8t+2)1,30, (8t+3)1),
C(8t + 86, z)fort—O,l, , 42 and D(8t + 11,7) for ¢ = 0,1,...,45%
Case 2. ift =1 (mod 3), ¢ > 1 the 6-cycles
A;(8,1) for i =0,1,.. ,""‘for_','-Ol
B;(13,1) for i =0,1,. :3"7 for j = 0,1 (omit if ¢ = 4),
(O3, (4t -+ 7)y, (8¢ + 7);, (126 + 4);, (8¢ + 1)5, (48 — 1)) for = 0,1,
(0;, (4t + 10);, (8¢ + 16)1,(1215 +21);, (8 +12);, (48 +4);) for = 0,1,
Aj(4t +11,4) for i =0,1,..., % for j = 0,1,
B;(4t +16,1) for i = 0,1,.. ”"sforJ—OI
D(16,1) for i =0,1,..., %% s 0(23 i) fori=0,1,..., %%,
(0o, (8t + 4)1, 30, (St +2),,20 (8t — 2)1), D(8t+3 i) fori=0,1,...,%*, and
C(8t + 10,1} for i =0,1,..., %% _ : |
Qg_.sg 3. ift =2 (mod 3), the 6-cycles
(Si)fori—Ol ., &3 for § =0,1 {omit.if ¢ = 2),
Bj(13 i) fori=0,1,. %‘5 for § =0,1 (omit-if ¢ = 2},
B;(4t,i) for i =0, 1, 2"" for j =0,1,
Aj(4t +17,4) fori=0,1 , 5 fOI'J*"'O 1,
D(16,i) for i =0,1,... 2‘“7 (omit if ¢ = 2),
C(23,i)fori =0,1,. 2‘"" (omit if £ = 2), (09, (8t+8)1, 20, (8t-+T7)1, 30, (Bt+3)1),
D(8t +7, z)forz—Ol L322 and C(8t + 14,1) for i =0,1,..., 452
In each case, the blocks, a.long w1th thelr images under my, form a 2-rotat10na1 6CS(v).

Lemma 4.6 If v =21 (mod 24) then there exists a 2-rotational 6CS(v).
Proof. Suppose v = 21 (mod 24), say v = 24k + 21. Consider the collection of

6-cycles:
{0g, 30, 20,61,41, 11}, D(3,4) for i =0,1,...,¢,
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C(10,3) for i=0,1,...,¢t — 1 {omit if ¢ = 0),
along with
Case 1. if ¢t = 0 (mod 2), the 6-cycles
(00120: 0o, 21,31, 71) (00!40 4y, (ﬁt + 9)1: (ﬁt + 9)03 (ﬁt + 5)0):
A(5,i) for i =90,1,.. ,"%' for j = 0,1 (omit if £ = 0), and
B;(10,4) for i =0,1,...,52 for j = Ol(omltoft--O)
Case 2. if t =1 (mod 2), the 6-cycl$
(00 20, 00,21, 31, 81), (0o, S0, 51, (6t + 10)1, (ﬁt + 10)o, (6t + 5)o),
(05,45, 124,225,165, 9;) for j = 0,1,
A;(11,7) for i =0,1,.. ‘“3for3—01(ormt1ft——1) and
B;(16,1) for i=10,1,.. "‘3for3-01(ormt1ft-1)
In each case, the blocks, a.long with their images under w3, form a 2-rotational 6CS(v).

Lemma 4.7 If v =25 (mod 48) then there exists a 2-rotational 6CS(v).

Proof. First suppose that v = 25. Consider the collection of blocks:
(00,00:50y 111121171): (00:30:51r 111990’60)1 (00: 11)21361, 30|4O)|
(00141340l81)80 01) D(5 0) (0J12114J:6.1:8::10 ) forj"“" 0 L
Now suppose v = 25 (mod 48), say v = 48t + 25 where ¢ > 0. Consider the collection
of 6-cycles:
(00,30, 00,21, 51, 101), (00,50. 91, (12t + 15)1, (12¢ + 11)o, (12¢ + 6)o),
(001 11321)4h 10:20), (Oﬂr (St + 4)[: (St + 4)0: (16t + 8)1: (lﬁt‘ + 8)0:01):
(04, (4t + 2);, (8t + 4);, (12t + 6);, (16t + 8);, (20t + 10);) for =0, 1,
along with
Case 1. if ¢t = 0 (mod 3), t > 0, the 6-cycles
B;j(4,i) fori=0,1,. ,‘53 for j =0,1,
A;(11,3) for i =0,1,...,58 for j =0, 1(01mt1ft—3),
(0.”! (4t + 5).'” (St + 6)}’ (12t + 6)1: (St + 2)J! (4t 1).1) for j=0,1,
A;(4t +6,1) for i =0,1,.. ,-—g—tnforg 0,1, ‘
" Bj(4t +11,8) for i =0,1,.. '3forg-—010(51)forz-—01 LER
D(10,4) fori=0,1,..., -2—:;—, (Oo, (8t + 6)1, 30, (8L + 4)1, 20, (8E)1),
D(8t+5,4) for i =0,1,..., %, and C(8¢t +12,1) for i = 0,1,..., 42,
Case 2. if t = 1 (mod 3), the 6-cycles :
B;(4,1) for i =0,1,..., %3 for =0,1 (omit if ¢ = 1),
A;(11,3) for i =0,1,.. i“ff.u'_',----{)l(ormi'.lft---l),
(0, (4t +8);, (8t + 13),, (12t + 13),,(8t+7),, (4t +3)_,) for j = 0, 1,
B;(4t +17,4) fori=0,1,...,%2 for =0,1,
A(4t+14z)forz—01 J}“5for3 0,1 {omit if t = 1),
C(5,i) fori =0,1,. 2“2 D(lD i) for i=0,1,..., 22 (omit if ¢ = 1),
(0o, (8t + 10)4, 20, (8t +9)1,3o (815 +5)), D(8t + 9 z) for i = 0,1,...,%1, and
C(SH— 16,4) for i=0,1,..., %4
ase 3. if ¢ = 2 (mod 3), the 6-cycles
B(4i)f0ri—01 ,‘_735for3 0,1 {omit if t = 2),
Aj(11,4) for i =0,1,..., 52 for j = 0,1 (omit if ¢ = 2),
(0, (4t +4),,(8t+3),,(12t - 1);, (8¢ ~ 2)s, (4 — 2)5) for j = 0,1,
Bj(4t +3,i) for i =0,1,...; %1 for j=0,1,
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In ea.ch'ca.‘;e, the blocks, along with their images under , form a 2-rotational 6CS(v).
- -

As in Theorem 4.1, the results of Lemmas 4.3 to 4.8 allow us to establish necessary
and sufficient conditions for the existence of & k-rotational 6CS(v), for all k. '

Theorem 4.2 A k-rotational 6CS(v) exists if and only if v=1 or9 (mod 12), k is
even and v =1 (mod k).

Theorem 4.2 immediately classifies reverse 6CS(v)s:
Corollary 4.2 A reverse 6CS(v) exists if and only if v =1 or 9 (mod 12).

We will represent the 8-cycle

by any cyclic shift of (a,b,¢,d,¢, f,g,h) or (h,g, f,e,d,c,b,a). We now consider k-
rotational 8CS(v)s. Again, as with Lemma 4.1, a necessary condition for the existence
of a k—rotational 8CS(v) is that k is even. . _

We now establish sufficiency for k = 2 in a series of lemmas.

Lemma 4.9 Ifv=1 (mod 64)“ then there exists a 2-rotational 8CS(v).

Proof. First suppose that v = 65. Consider the collection of 8-cycles:
(OO, 00: 4-05 160,31h 150, Ol: 121), (001 80: 81: 01: 161:_2411 240: 160))
(01,44, 81,12y, 16y, 20;,24,,28,), (0g, 41,80, 124, 160, 20;, 240, 28,),
(001 121: 240: 411 160: 28]:801 20[)1 (01'1 3\'18i5 141"211'1 21': 13"23‘) for i= 03 11
(001 10:'160y 171: 150: 141: 151: 3’01)1 (OD: 20: 160: 1911 1401 11 14 13!: 27!), .
(00’ 26!3 &),281:40, ]-Oh 20: 91): and (00) 221, 40: 251’60: .161330) 141)
Now suppose v = 64t + 1 where ¢t > 1. Consider the collection of 8-cycles:
(00, 0o, (4t)o, (12¢)0, (28t — 1)1, (12t — 1)o, (28t)1, (208)1),
(g, (12t)q, (128);, 0y, (168),, (28t)1, (28t)o, (16t)o),
(01, (481, (8t}y, (12t)s, (16)s, (208)1, (248)1, (282)),
(Oﬂs (4t)h (St)ﬂﬁ (12t)1: (16t)0: (20t)l! (24”0’ (28t)1),
(00: (12t)1a (24t)0: (4t)l: (lﬁt)ﬂ: (28t)la (St)ﬂ_i (2Ot)l): _ _
(0o, 1o, (168)0,.(16¢ + 1)y, (16t — 1}q, (16¢ — 21, (168 — 1)1, (32t — 2)1),
(00, 20, (16t)o, (16¢ + 3)y, (16 — 1)o, (16 — 4)y, (16¢ — 2),, (32t — 4),),
(0, (3 + 45, (7 + 8)i, (12 + 128), (18 + 165);, (16t + 15 + 128);, (11 + 83);, (16¢ +
6 +4s)) for s=0,1,...,t —2and i = 0,1,
(Or, (48 — 1), (8t)s, (12t + 2)4, (16t 4 5);, (28t + 6);, (8t + 5);, (20¢ + 3);) for i = 0,1,
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(0s, (4t + 4 + 43);, (8¢ + 9 + 85)s, (12t + 15 + 123);, (16t + 22 + 168);, (28t -+ 18 +
128)q, (8t + 13 + 8s)i, (20t + 7 + 48);) for s=0,1,...,t — 2 and i = 0, ],

(Oo, (32t—5—48)1, 30, (32t—3—48)1, 40, (9+4S)1, 20, (8+4S)1) fors = 0, 1,...,t—-3
(omit if ¢ = 2), A

(0o, (282 + 3)1, 4o, (28 + 6)1, 50, (4¢ + 2)1, 30, (4t +1)1),

(0o, (28t — 2 — 48),, 3, (28t — 48)1,40, (4t + 6 + 48)1,2, (4L + 5 + 48),) for s =
0,1,...,2—2,

(0o, (20t + 2)1, 40, (20¢ 4 5)1, 60, (12t + 4)4, 35, (12¢ + 2)1), and

(Go, (20t — 3 — 43)1,3.J (20 ~ 1 — 45);, 4o, (12t +7 + 45)1, 20, (12t + 6 + 45);) for

s=01,. -2
In both cases, the blocks, along with their images under mp, form a 2-rotational
8CS(v). : |

. Lemuma 4.10 If v =17 (mod 64) then there exists a 2-rotational 8CS(v).

Proof. First suppose that v = 17. Consider the collection of 8-cycles:
(OO: 00: 201 '50: 1!: 301 31: 61)1 (001 101311 14, 51| 717 50:40):
(01,11,21, 31, 41, 51,61, 71), (0o, 11,29, 31, 40, 51,60, 71), and
(OOl 31,60, 11, 40! 12, 51)
Now suppose v = 64t + 17 where ¢ > 0. Consider the collection of 8-cycles:
(00, Og, (4t + 1)o, (12¢ + 3)o, (28t -+ 8)1, (12t + 4)o, (28t + 7)1, (20t + 5)1),
(Oo, (12t 4 3)o, (12¢ + 3)1, 01, (16¢ + 4)1, (28t +- 7)1, (28 + 7)o, (16¢ + 4)q),
(01: (4t + 1)1: (St + 2)lr (12t + 3)1: (lﬁt + 4)1: (2Ot + 5)1: (24t + 6)1: (28t + 7)1):
(o, (4t + 1)y, (8¢ + 2o, (12t + 3)y, (16¢ + 4)o, (20t + 5),, (242 + 6)o, (28t + 7)1),
(0o, (12¢ + 3)1, (24t + 6)o, (42 + 1)1, (16 + 4)o, (28t + Th, (8t + 2)g, (20t + 5)1),
(0, (1+4s);, (3-+83);, (6+125);, (10+16s);, (16¢+13+12s);, (7+83);, (16¢-+8+4s);)
fors=0,1,...,t—1andi=0,1,
(0;, (42 4+ 2 + 43),, (8t + 5 -+ 8s);, (12 + 9 + 128);, (16t + 14 + 163),, (28t + 164
12s);, (8 4 9 + 85);, (20t + 9 + 4s5);) for s =0,1,...,t — 1 and i = 0,1,
(0o, (32t 4+ 7 — 48)1,30, (1 — 45)1,40, (5 +45)1,2 (4+4s) Yfors=0,1,. -1,
(00, (28t +6— 43)1,30 (28t + 85— 43)1,40 (4t + 64+ 43)],20, (4t + 5+ 48)1) for
s=0,1,...,2t -1,
(Oo, (20 + 6),., 4o, (20 + 8)1, 50, (12t + 7)1, 20, (12t + 6)1), and
(0o, (20t + 1 — 438)4, 30, (20t 4- 3 ~ 4s)y, 4o, (12t + 11 - 48)1, 20, (12t + 10 +43) ) for
§=0,1,...,t =2 (Omltlft"' 1).
In both cases, the blocks, along with their images under m;, form a 2-rotational
8CS(v). _ i

Lemma 4.11 If v = 33 (mod 64) then there exists a 2-rotational 8CS{v).

Proof. First suppose that v = 33. Consider the collection of 8-cycles:
(00: 00: 201 60: 131: 501 141,21): (00, 60: 61: 01: 81) 1413 1401 80)!
(01,21,41,61,81,10,,12,, 144}, (00,21, 4o, 61, 80, 10, 120, 144),
(00! 61: 120: 211 80: 141: 401 101): (00) 10, 80) 91160:51! 61: 131)! a.nd
(001 30a80: 121y70:3l:61| 111) ‘

Now suppose v = 64¢ + 33 where ¢t > (. Consider the collection of 8-cycles:
(00, 0g, (4t + 2)o, (12t + 6o, (28t + 13)1, (12t + 5)o, (28t + 14),, (20¢ + 10),),
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(0g, (12t + 6)g, (12t + 6)1, 04, (16¢ + 8);, (28t + 14);, (28¢ + 14)o, (16¢ + 8)q),

(04, (4¢ + 2)1, (8t + 4)1, (12¢ + 6)1, (16t + 8)1, (20¢ + 10, (24¢ + 12}y, (28t + 14)y),

(0o, (42 + 2);. (8t + 4)g, (12t + 6)4, (16¢ + 8)o, (20¢ + 10)y, (24t + 12)o, (28t + 14),),

(0o, (12 + 6)y, (24¢ + 12)q, (4t + 2)1, (16t + 8)o, (28t + 14)q, (8¢ + 4)o, (20¢ + 10),),

(0o, Lo, (16¢ + 8o, (16¢ + 91, (16¢ + 7)o, (16t + 6)1, (16¢ + h, (32t + 14),),

(00! 20! (16t + 8)0! (16t + 11)11 (16t + 7)01 (16t + 4)11 (16t + 6)1: (32t + 12)1)1

(0, (3 + 48);, (T + 85);, (12 + 125);, (18 + 18s);, (162 + 23 + 12s);, (11 + 8s);, (16¢+
14 + 4s);) for s = 0,1,...,t =2 and i = 0,1 (omit if t = 1), .

(0;, (4t —1);, (8¢ — 1), (12t);, (16¢ 4 3)y, (28 + 12);, (8 + 4 )i, (20¢ 4+ 11);) forz = 0,1,

(0;, (4t + 4 + 45);, (8¢ + 9 + 8s);, (12¢ + 15 + 12s);, (164 + 22 + 16s);, (28t + 26+
12s);, (8t + 13 + 8s);, (20t + 15 + 4s);) for s =0,1,...,t =1 and i = 0,1,

(0o, (32t+11—45)y, 3, (32t-+13—45)1, 40, (9+45)1, 20, (8+4s);) for s =0,1,...,t~2
(omit if £ = 1),

(00, (28t <4 15)1, dq, (28t + 17)1, do, (4t + 6)1, 20, (‘H + 5)1),

(0o, (28t + 10 — 43);, 3¢, (28t + 12 —~ 45)1,40, (42 + 10 + 45}, 20, (4t + 9 + 4s);) for
s=0,1,...,2t ~1, and

(00, (20t + 9— 43)1, 30, (20t +11 - 4.5)1, 40, (12t +11 4 4:5)1, 20, (th + 10 + 43)1) for
s=0,1,...,t —1.

In both cases, the blocks, along with their images under =, form a 2-rotational

8C S (v). |
Lemma 4.12 If v = 49 (mod 64) then there exists a 2-rotational 8C S(v).

Proof. Suppose v = 64t + 49 where ¢ > 0. Consider the collection of 8-cycles:

(DO:OCH (4t + 3)0: (12t + 9)01 (28t + 20)17 (12t + 8)03 (28t + 21)11 (20': + 15)1)1

(0o, (12¢ + 9o, (12¢ + 9)1, 01, (16t + 12)4, (28t + 3)1, (28¢ + 3)o, (164 + 12)q),

(0r, (42 + 3)1, (8t 4 6)1, (12t + 9)1, (16¢ + 12);,(20¢ 4 15), (24t + 18)1, (28t + 21 )1),

(0o, (42 + 3)1, (8¢ + 6o, (12t + 9)1, (16¢ + 12)o, (20 + 15)1, (24t + 18)o, (28t + 21)),

(00, (121’ + 9)11 (24t + 18)0$ (4t + 3)11 (16t+ 12)01 (28t + 21)11 (St + 6)0a (20t + 15)1)1

(0;, (1448);, (34+85);, (64125);, (104+16s);, (16421 +125);, (T+8s);, (16¢+16+4s):)
for s=0,1,...,t~1and ¢ = 0,1 (omit if ¢ = 0),

(0;, (4t + 1);, (8t + 3);, (12t + ), (16t + 12);, (28t + 23);, (8t + 9);, (20t + 17);) for
i=0,1,

(0:, (4 4 6 + 45);, (8¢ + 13 + 8s)s, (12¢ + 21 + 125);, (16¢ + 30 + 165, (28¢ + 36+

128);, (8¢ + 17 + 8s);, (201 + 21 + 4s);) for s =10,1,...,¢0 =1 and ¢ = 0,1 (omit
if ¢t =0),

(0o, (32t +23—43)y, 30, (32t +25—45)1,40, (3+43)1, 20, (4+4ds)) fors =0,1,...,t-1
(omit if ¢t = 0),

(0o, (28t + 23)1, 40, (28t + 261,60, (42 + 7)1, 30, (4t + 5)),

(00, (28t + 18 — 43)1,30, (28t + 20 — 45)1,40, (4t + 10 + 43)1,20, (4t + 9+ 45)1) for
5=0,1,...,2t =1 (omit if t = 0),

(0o, (20t + 18)1, 40, (20t + 21)1, 50, (12t + 11)1, 30, (12¢ + 10)1), and

(00, (20t o+ 13 — 48)1,30, (20t 4+ 15 — 45)1,40,(12t + 15+ 43)1,20, (12t 4+ 14 + 43)1) _

for s =0,1,...,t —1 (omit if ¢ = 0).
These blocks, along with their images under 7, form a 2-rotational 8C S5 (v). |

As in Theorem 4.1, the results of Lemmas 4.9 to 4.12 allow us to establish necessary

82



and sufficient conditions for the existence of a k-rotational SC’S(v), for all k. - -

Theorem 4.3 A k-rotational 8CS(v) ezists if and only ifv= 1 {mod 16 ), k is even
andv=1 (mod k). .

Theorem 4.3 immediately classifies reverse 8CS(v)s:
Corollary 4.3 A reverse 8CS(v) exists if and only if v =1 (mod 16)).
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