Decompositions of the Complete Digraph and the Complete Graph which admit Certain Automorphisms

Gary D. Coker

Department of Mathematics

Williamsburg Technical College

Kingstree, South Carolina 29556-4197

Robert B. Gardner ¹
Department of Mathematics
East Tennessee State University
Johnson City, Tennessee 37614-0663

Robin Johnson 8525 Chalmette #O-10 Shreveport, Louisiana 71115

Abstract. Decompositions of the complete digraph into isomorphic copies of orientations of 4-cycles and 5-cycles are considered. Necessary and sufficient conditions for such decompositions admitting cyclic or rotational automorphisms are given. Some new decompositions of the complete digraph into certain (non-self-converse) orientations of the 6-cycle are also given. The spectrum of 4-, 6-, and 8-cycle systems admitting either a reverse automorphism or a k--rotational automorphism for any k are determined.

1 Introduction

Let D_v denote the complete digraph on v vertices. If g is a digraph, then a g-decomposition of D_v is a set $\gamma = \{g_1, g_2, \ldots, g_n\}$ of arc-disjoint subgraphs of D_v each of which is isomorphic to g and such that $\bigcup_{i=1}^{n} A(g_i) = A(D_v)$, where A(G) is the arc set of digraph G. Several of these decompositions are equivalent to block designs. For example, a D_3 -decomposition of D_v is equivalent to a Steiner triple system of order v. A k-circuit decomposition of D_v is equivalent to a k-Mendelsohn design of order v, denoted M(k, v).

There are two orientations of the 3-cycle: the 3-circuit and the digraph (called a "transitive triple"):

A decomposition of D_v into 3-circuits is equivalent to a Mendelsohn triple system of order v (or a M(3, v)) which exists if and only if $v \equiv 0$ or 1 (mod 3), $v \neq 6$ [14]. A

¹Research supported by ETSU under RDC grant #94-105/M.

decomposition of D_v into transitive triples is equivalent to a directed triple system of order v, which exists if and only if $v \equiv 0$ or 1 (mod 3) [11].

There are four orientations of the 4-cycle: the 4-circuit and the following

We represent X as $[a, b, c, d]_x$, Y as $[a, b, c, d]_y$, and Z as $[a, b, c, d]_z$. A M(4, v) exists if and only if $v \equiv 0$ or 1 (mod 4), $v \neq 4$ [23]. A X-decomposition of D_v exists if and only if $v \equiv 0$ or 1 (mod 4), $v \neq 5$, a Y-decomposition of D_v exists if and only if $v \equiv 0$ or 1 (mod 4), $v \notin \{4,5\}$, and a Z-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$ [10].

There are four orientations of the 5-cycle: the 5-circuit and the following

We represent A_i as $[a, b, c, d, e]_i$, for i = 1, 2, 3. A M(5, v) exists if and only if $v \equiv 0$ or 1 (mod 5) [2]. This is also the spectrum of an A_i -decomposition of D_v for i = 1, 2, 3 [1].

A digraph d is said to be self-converse if reversing each of the arcs produces a digraph isomorphic to d. Each of the orientations of the 3-cycle, 4-cycle and 5-cycle are self-converse. These are the only cycles for which each orientation is self-converse [9]. Varma [26] gave necessary and sufficient conditions for the decomposition of D_{v} into self-converse orientations of 6-cycles, 7-cycles and 8-cycles.

An automorphism of a digraph decomposition of D_v is a permutation of the vertex set of D_v which fixes the collection of isomorphic digraphs in the decomposition. A decomposition of D_v admitting an automorphism consisting of a cycle of length v is said to be cyclic. A decomposition of D_v admitting an automorphism consisting of a fixed point and a cycle of length v-1 is said to be rotational. Necessary and sufficient conditions are known for the existence of cyclic M(k,v)s for k=3,4,5,6,7,8 [6,15,16]. Necessary and sufficient conditions are known for the existence of rotational M(k,v)s for k=3,4,5 [4,18]. Cyclic directed triple systems exist if and only if $v\equiv 1,4,$ or 7 (mod 12) [7] and rotational directed triple systems exist if and only if $v\equiv 0$ (mod 3) [5]. The purpose of this paper is to explore cyclic and rotational automorphisms of decompositions of D_v into orientations of 4-cycles and 5-cycles. In addition, we

address the existence question for decompositions of D_{ν} into copies of the non-self-converse orientations of the 6-cycle. Finally, we present some related results for cycle systems (i.e. decompositions of the complete graph into cycles of a given length).

2 Cyclic Decompositions

In this section, we give necessary and sufficient conditions for the existence of cyclic decompositions of D_v into orientations of 4-cycles and 5-cycles. Throughout this section, we assume D_v has vertex set \mathbf{Z}_v and the automorphism is the permutation $\alpha = (0, 1, \ldots, v-1)$. With each arc (a, b) of D_v we associate a difference of b-a (mod v). The existence of a cyclic X-decomposition and of a cyclic Y-decomposition of D_v implies a partitioning of the set of differences $\{1, 2, \ldots, v-1\}$ into difference 4-tuples (d_i, d_i, d_k, d_l) such that

 $d_i + d_j + d_k \equiv d_l \pmod{v}$ for X-decompositions, or

 $d_i + d_j \equiv d_k + d_l \pmod{v}$ for Y-decompositions.

Therefore, a necessary condition for either such decomposition is that $v-1 \equiv 0 \pmod{4}$. We show this condition is sufficient in the next two theorems.

Theorem 2.1 A cyclic X-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$, $v \neq 5$.

Proof. We consider two cases.

Case 1. Suppose $v \equiv 1 \pmod{8}$, say v = 8t + 1. Consider the blocks:

 $[0, 1+i, 6t+2+2i, 2t+1+i]_x$ for i = 0, 1, ..., t-1, and

 $[0, t+1+i, 1+2i, 5t+1+i]_x$ for $i=0,1,\ldots,t-1$.

Case 2. Suppose $v \equiv 5 \pmod{8}$, say v = 8t + 5, t > 0. Consider the blocks:

 $[0,1,2t+3,4t+6]_x$, $[0,2+i,1,2t+5+2i]_x$ for $i=0,1,\ldots,t$, and

 $[0, t+3+i, 1, 4t+8+2i]_x$ for $i=0,1,\ldots,t-2$ (omit if t=1).

In both cases, the blocks, along with their images under α , form a cyclic X-decomposition of D_{ν} .

Theorem 2.2 A cyclic Y-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$, $v \neq 5$.

Proof. Suppose v = 4t + 1, t > 1. Consider the blocks:

 $[0, 2t-1, 2t-2, 4t-1]_y$, and $[0, 1+i, 4t-1, 2t+1+i]_y$ for $i=0, 1, \ldots, t-2$. These blocks, along with their images under α , form a cyclic Y-decomposition of D_{v} .

Theorem 2.3 A cyclic Z-decomposition of D_v exists if and only if $v \equiv 1 \pmod{4}$.

Proof. The necessary conditions follow from the spectrum of a Z-decomposition of D_v . Suppose $v \equiv 1 \pmod{4}$, say v = 4t + 1. Consider the blocks:

 $[0, 1+i, 2t+2+2i, 2t+1+i]_z$ for $i=0,1,\ldots,t-1$.

These blocks, along with their images under α , form a cyclic Z-decomposition of D_{ν}

We now turn our attention to the existence of cyclic A_i —decompositions of D_v for i = 1, 2, 3. We have as a necessary condition:

Lemma 2.1 If a cyclic A_i -decomposition of D_v exists, where i = 1, 2, 3, then $v \equiv 1, 11$, or 16 (mod 20).

Proof. The existence of such a decomposition implies a partitioning of the set of differences $\{1, 2, \ldots, v-1\}$ into difference 5-tuples $(d_i, d_j, d_k, d_l, d_m)$ such that

 $d_i + d_j + d_k \equiv d_l + d_m \pmod{v}$ for A_1 and A_2 decompositions, or

 $d_i + d_j + d_k + d_l \equiv d_m \pmod{v}$ for A_3 -decompositions.

Therefore, $v-1\equiv 0\pmod 5$ is necessary. Notice that from the above condition on the difference 5-tuples, we can partition the difference set into two sets A and B such that the sum of the elements of A is congruent to the sum of the elements of B modulo v. That is, there exists a and b such that $a+b=\frac{v(v-1)}{2}$ and $a\equiv b\pmod 2$. But if $v\equiv 6\pmod 20$, say v=20t+6, then a+b=(20t+5)(10t+3) which is odd. But if $a\equiv b\pmod 20t+6$ then a+b is even. Therefore $v\equiv 6\pmod 20$ is not possible and the necessary conditions for such a system are $v\equiv 1$, 11, or 16 (mod 20).

We now show the necessary conditions of Lemma 2.1 are also sufficient.

Theorem 2.4 A cyclic A_1 -decomposition of D_v exists if and only if $v \equiv 1, 11$, or 16 (mod 5).

Proof. We consider two cases.

Case 1. Suppose $v \equiv 1 \pmod{10}$, say v = 10t + 1. Consider the blocks:

 $[0, 1+i, 5t+1, 4t-i, 4t-1-2i]_1$ for $i=0, 1, \ldots, t-1$, and

 $[0, 2t+2+2i, 7t+3+3i, 8t+4+4i, 6t+2+2i]_1$ for $i=0,1,\ldots,t-1$.

Case 2. Suppose $v \equiv 16 \pmod{20}$, say v = 20t + 16. Consider the blocks:

 $[0, 20t + 14 - 2i, 7t + 4 - i, 20t + 15, 1 + 2i]_1$ for $i = 0, 1, \dots, 2t - 1$ (omit if t = 0),

 $[0,4t+3,13t+9,8t+4,4t+1]_1,[0,4t+2,19t+14,9t+6,5t+4]_1,$

 $[0, 10t + 9 + i, 3t + 3, 10t + 8 - i, 20t + 15 - 2i]_1$ for i = 0, 1, ..., t, and

 $[0, 5t + 3 - i, 17t + 12 - 2i, 19t + 15, 14t + 12 + i]_1$ for i = 0, 1, ..., t - 1 (omit if t = 0).

In both cases, the blocks, along with their images under α , form a cyclic A_1 -decomposition of D_v .

Theorem 2.5 A cyclic A_2 -decomposition of D_v exists if and only if $v \equiv 1,11$, or 16 (mod 5).

Proof. We consider two cases.

Case 1. Suppose $v \equiv 1 \pmod{10}$, say v = 10t + 1. Consider the blocks:

 $[0, 1+i, 5t+1, 5t-i, 4t-1-2i]_2$ for i = 0, 1, ..., t-1, and

 $[0, 2t+2+2i, 7t+3+3i, 5t+1+i, 6t+2+2i]_2$ for $i=0,1,\ldots,t-1$.

Case 2. Suppose $v \equiv 16 \pmod{20}$, say v = 20t + 16. Consider the blocks:

 $[0,20t+14-2i,7t+4-i,7t+6+i,7t+5-i]_2$ for $i=0,1,\ldots,2t-1$ (omit if t=0), $[0,4t+3,13t+9,9t+6,4t+1]_2$, $[0,16t+14,11t+10,15t+12,5t+4]_2$,

 $[0, 10t + 9 + i, 3t + 3, 13t + 10 - i, 13t + 11 + i]_2$ for $i = 0, 1, \ldots, t$, and $[0, 15t + 13 + i, 7t + 6, 12t + 9 - i, 18t + 13 - 2i]_2$ for $i = 0, 1, \ldots, t - 1$ (omit if t = 0). In both cases, the blocks, along with their images under α , form a cyclic A_2 -decomposition of D_v .

Theorem 2.6 A cyclic A_3 -decomposition of D_v exists if and only if $v \equiv 1,11$, or 16 (mod 5).

Proof. We consider two cases.

Case 1. Suppose $v \equiv 1 \pmod{10}$, say v = 10t + 1. Consider the blocks:

$$[0, 1+i, t+2+2i, 5t+1, 5t-i]_3$$
 for $i=0,1,\ldots,t-1$, and

$$[0, 2t + 2 + 2i, t + 1 + i, 7t + 3 + 3i, 5t + 1 + i]_3$$
 for $i = 0, 1, \dots, t - 1$.

Case 2. Suppose $v \equiv 16 \pmod{20}$, say v = 20t + 16. Consider the blocks:

$$[0, 1+2i, 20t+15, 7t+4-i, 7t+6+i]_3$$
 for $i=0,1,\ldots,2t-1$ (omit if $t=0$),

$$[0, 4t + 1, 8t + 4, 13t + 9, 9t + 6]_3, [0, 5t + 4, 9t + 6, 19t + 14, 15t + 12]_3,$$

$$[0, 20t + 15 - 2i, 10t + 8 - i, 3t + 3, 13t + 10 - i]_3$$
 for $i = 0, 1, \dots, t$, and

$$[0, 14t + 12 + i, 19t + 15, 17t + 12 - 2i, 12t + 9 - i]_3$$
 for $i = 0, 1, ..., t - 1$ (omit if $t = 0$).

In both cases, the blocks, along with their images under α , form a cyclic A_3 -decomposition of D_v .

We now consider the cyclic decomposition of D_v into the following orientations of the 6-cycle:

We represent B_1 as $[a, b, c, d, e, f]_1$ and B_2 as $[a, b, c, d, e, f]_2$. Neither of these orientations is self-converse. However, B_1 is the converse of B_2 . Necessary and sufficient conditions are known for the decompositions of D_v into the remaining orientations of the 6-cycle (each of which is self-converse) [26]. Necessary conditions for the existence of B_1 — or B_2 —decompositions of D_v are that $v \equiv 0, 1$, or 3 (mod 6).

Theorem 2.7 A cyclic B_1 -decomposition of D_v exists if and only if $v \equiv 1 \pmod{6}$.

Proof. As above, a necessary condition for such a system is that the number of differences be divisible by 6. That is, $v \equiv 1 \pmod{6}$ is necessary. We show sufficiency in three cases.

Case 1. Suppose $v \equiv 1 \pmod{12}$, say v = 12t + 1. Consider the blocks:

$$[0, 1+12i, 4+24i, 2+12i, 9+24i, 5+12i]_1$$
 for $i=0,1,\ldots,t-1$, and

$$[0, 6+12i, 16+24i, 8+12i, 20+24i, 11+12i]_1$$
 for $i=0,1,\ldots,t-1$.

Case 2. Suppose $v \equiv 7 \pmod{24}$, say v = 24t + 7. Consider the blocks:

 $[0, 1+12i, 6+24i, 3+12i, 10+24i, 4+12i]_1$ for $i=0,1,\ldots,t-1$ (omit if t=0),

```
[0, 8+12i, 18+24i, 9+12i, 23+24i, 12+12i]_1 for i=0,1,\ldots,t-1 (omit if t=0), [0, 12t+5+12i, 24t+14+24i, 12t+7+12i, 24t+18+24i, 12t+8+12i]_1 for i=0,1,\ldots,t-1 (omit if t=0),
```

 $[0, 12t + 12 + 12i, 24t + 26 + 24i, 12t + 13 + 12i, 24t + 31 + 24i, 12t + 16 + 12i]_1$ for $i = 0, 1, \dots, t - 1$ (omit if t = 0), and $[0, 2, 12t + 6, 3, 12t + 4, 24t + 5]_1$.

Case 3. Suppose $v \equiv 19 \pmod{24}$, say v = 24t + 19. Consider the blocks:

 $[0, 1+12i, 6+24i, 3+12i, 10+24i, 4+12i]_1$ for $i=0,1,\ldots,t$,

 $[0, 8+12i, 18+24i, 9+12i, 23+24i, 12+12i]_1$ for $i=0,1,\ldots,t-1$ (omit if t=0),

 $[0, 12t + 12 + 12i, 24t + 26 + 24i, 12t + 13 + 12i, 24t + 31 + 24i, 12t + 16 + 12i]_1$ for $i = 0, 1, \dots, t$,

 $[0, 12t + 17 + 12i, 24t + 38 + 24i, 12t + 19 + 12i, 24t + 42 + 24i, 12t + 20 + 12i]_1$ for $i = 0, 1, \ldots, t - 1$ (omit if t = 0), and $[0, 2, 12t + 11, 1, 12t + 9, 24t + 17]_1$.

In each case, the blocks, along with their images under α , form a cyclic B_1 -decomposition of D_v .

Since B_2 is the converse of B_1 , the existence of a cyclic B_1 -decomposition of D_v implies the existence of a cyclic B_2 decomposition of D_v (and conversely). We therefore have:

Theorem 2.8 A cyclic B_2 -decomposition of D_v exists if and only if $v \equiv 1 \pmod{6}$.

3 Rotational Decompositions

In this section, we give necessary and sufficient conditions for the existence of rotational decompositions of D_v into orientations of 4-cycles and 5-cycles. Throughout this section, we assume D_v has vertex set $\{\infty\} \bigcup \mathbf{Z}_{v-1}$ and the automorphism is the permutation $\beta = (\infty)(0, 1, \ldots, v-2)$.

Lemma 3.1 If a rotational X- or Y-decomposition of D_v exists, then $v\equiv 0$ (mod 4).

Proof. The existence of a rotational X- or Y-decomposition of D_v implies the partitioning of the set of differences $\{1, 2, \ldots, v-2\} \setminus \{d_1, d_2\}$, where d_1 and d_2 are two differences, into difference 4-tuples (d_i, d_j, d_k, d_l) such that

 $d_i + d_j + d_k \equiv d_l \pmod{v}$ for X-decompositions, or

 $d_i + d_j \equiv d_k + d_l \pmod{v}$ for Y-decompositions.

Therefore, a necessary condition for either such decomposition is that $v-4 \equiv 0 \pmod{4}$.

We show this condition is sufficient in the next two theorems.

Theorem 3.1 A rotational X-decomposition of D_v exists if and only if $v \equiv 0 \pmod{4}$.

Proof. We consider two cases.

Case 1. Suppose $v \equiv 0 \pmod{8}$, say v = 8t. Consider the blocks: $[6t-1,\infty,0,6t-2]_x$, $[0,1+i,6t+2i,2t+i]_x$ for $i=0,1,\ldots,t-1$, and

 $[0, t+1+i, 8t+2i, 5t-1+i]_x \text{ for } i=0,1,\ldots,t-2 \text{ (omit if } t=1).$ Case 2. Suppose $v\equiv 4 \pmod 8$, say v=8t+4. Consider the blocks: $[1,\infty,0,6t+2]_x$, $[0,1+i,6t+4+2i,2t+1+i]_x$ for $i=0,1,\ldots,t-1$ (omit if t=0), and $[0,t+1+i,8t+4+2i,5t+1+i]_x$ for $i=0,1,\ldots,t-1$ (omit if t=0).

In both cases, the blocks, along with their images under the permutation β , form a rotational X-decomposition of D_v .

Theorem 3.2 A rotational Y-decomposition of D_v exists if and only if $v \equiv 0 \pmod{4}$, $v \neq 4$.

Proof. Suppose $v \equiv 0 \pmod{4}$, say v = 4t, $t \geq 2$. Consider the blocks: $[1, \infty, 4t - 3, 0]_y$, and $[0, 1+i, 4t - 3, 2t - 1+i]_y$ for $i = 0, 1, \ldots, t-2$. These blocks along with their images under the permutation $\pi = (\infty)(0, 1, \ldots, 4t-2)$, form a Y-decomposition of D_v where the point set of D_v is $\{\infty\} \cup \mathbb{Z}_{4t-1}$.

We note that Theorems 2.1, 2.2, 2.3, 3.1, and 3.2 combine to give direct constructions of X-, Y-, and Z-decompositions of D_v for all admissible v.

Concerning rotational Z-decompositions of D_{v} we have:

Theorem 3.3 A rotational Z-decomposition of D_v does not exist for any v.

Proof. Such a system must have a block containing the fixed point ∞ . So there must be either a block of the form $A = [a, \infty, b, c]_z$ or $B = [c, a, \infty, b]_z$. If we apply β^{b-a} to block A, we get the arc (a, ∞) twice in the decomposition, a contradiction. If we apply β^{b-a} to block B, we get the arc (∞, a) twice in the decomposition, another contradiction. Therefore, a rotational Z-decomposition of D_v does not exist.

We now turn our attention to rotational A_i -decompositions of D_v for i = 1, 2, 3.

Lemma 3.2 If a rotational A_i -decomposition of D_v exists for i = 1, 2 or 3, then $v \equiv 0 \pmod{5}$.

Proof. As in Lemma 3.1, the existence of such a decomposition implies a partitioning of the set $\{1, 2, \ldots, v-2\} \setminus \{d_1, d_2, d_3\}$ into difference 5-tuples such that

 $d_i + d_j + d_k \equiv d_l + d_m \pmod{v-1}$ for i = 1, 2, or

 $d_i + d_i + d_k + d_l \equiv d_m \pmod{v - 1} \text{ for } i = 3.$

Therefore, a necessary condition for such a system is that $v - 5 \equiv 0 \pmod{5}$.

We show this condition is sufficient in the next three theorems.

Theorem 3.4 A rotational A_1 -decomposition of D_v exists if and only if $v \equiv 0 \pmod{5}$.

Proof. We consider two cases.

3 ----

Case 1. Suppose $v \equiv 0 \pmod{10}$, say v = 10t. Consider the blocks: $[0, 1+i, 4t+1+2i, 7t+1+3i, 7t+2i]_1$ for i = 0, 1, ..., t-1,

 $[0, t+2+2i, 7t+i, 4t-1, 3t-3-2i]_1$ for $i=0,1,\ldots,t-2$ (omit if t=1), and $[0,\infty,6t,1,3t]_1$.

Case 2. If v = 5, consider the block $[0, \infty, 2, 3, 1]_1$. Next, suppose $v \equiv 5 \pmod{10}$, say v = 10t + 5, $t \ge 1$. Consider the blocks:

 $[0, 6t + 3 - i, 9t + 4, 6t + 4 + i, 1 + 2i]_1$ for i = 0, 1, ..., t - 1,

 $[0, 4+2i, 7t+7+i, 3, 10t+3-2i]_1$ for $i=0,1,\ldots,t-2$ (omit if t=1),

 $[0,6t+4,t+1,3t+2,8t+5]_1$, and $[0,\infty,5t+2,5t,10t+2]_1$.

These blocks, along with their images under β , form a rotational A_1 -decomposition of $D_{\dot{\nu}}$.

Theorem 3.5 A rotational A_2 -decomposition of D_v exists if and only if $v \equiv 0 \pmod{5}$.

Proof. We consider two cases.

Case 1. Suppose $v \equiv 0 \pmod{10}$, say v = 10t. Consider the blocks:

 $[0, 1+i, 4t+1+2i, 4t+i, 7t+2i]_2$ for $i = 0, 1, \dots, t-1$,

 $[0, t+2+2i, 7t+i, 6t-2-i, 3t-3-2i]_2$ for $i=0,1,\ldots,t-2$ (omit if t=1), and $[0, 3t-1, \infty, 9t-1, 3t]_2$.

Case 2. Suppose $v \equiv 5 \pmod{10}$, say v = 10t + 5. Consider the blocks:

 $[0,3t+1+i,9t+4,3t+1+i,3t-i]_2$ for $i=0,1,\ldots,t-1$,

 $[0, 7t+3-i, 7t+7+i, 7t+3-i, 10t+3-2i]_2$ for i = 0, 1, ..., t-2 (omit if t = 1),

 $[0,6t+4,t+1,6t+4,8t+5]_2$, and $[0,\infty,5t-2,5t,10t+2]_2$.

These blocks, along with their images under β , form a rotational A_2 -decomposition of D_v .

Theorem 3.6 A rotational A_3 -decomposition of D_v exists if and only if $v \equiv 0 \pmod{5}$.

Proof. We consider two cases.

Case 1. Suppose $v \equiv 0 \pmod{10}$, say v = 10t. Consider the blocks:

 $[0,6t-1,\infty,1,3t]_3$, $[0,1+i,7t,4t+1+2i,4t+i]_3$ for $i=0,1,\ldots,t-1$, and

 $[0, t+2+2i, 4t+3+3i, 7t+i, 6t-2-i]_3$ for $i=0,1,\ldots,t-2$ (omit if t=1).

Case 2. If v = 5, consider the block $[0, 1, \infty, 3, 2]_3$. Next, suppose $v \equiv 5 \pmod{10}$, say v = 10t + 5, $t \ge 1$. Consider the blocks:

 $[0, 1+2i, 6t+4+i, 9t+4, 3t+1+i]_3$ for $i=0,1,\ldots,t-1$,

 $[0, 10t + 3 - 2i, 10t + 7, 7t + 7 + i, 7t + 3 - i]_3$ for $i = 0, 1, \dots, t - 2$ (omit if t = 1),

 $[0,8t+3,3t,8t+3,6t+4]_3$, and $[0,\infty,5t-2,5t,10t+2]_3$.

These blocks, along with their images under β , form a rotational A_3 -decomposition of D_v .

We note that Theorems 2.4, 2.5, 2.6, 3.4, 3.5 and 3.6 combine to give direct constructions of A_i —decompositions of D_v for all admissible v except for $v \equiv 6 \pmod{20}$.

We now consider B_1 — and B_2 —decompositions of D_v which admit a rotational automorphism. We have:

Theorem 3.7 A rotational B_1 -decomposition of D_v exists if and only if $v \equiv 0 \pmod{6}$.

Proof. An argument similar to those in Lemmas 3.1 and 3.2 shows that $v \equiv 0 \pmod{6}$ is necessary. For sufficiency, we consider two cases.

Case 1. Suppose $v \equiv 0 \pmod{12}$, say v = 12t. Consider the blocks:

 $[0, 1+12i, 4+24i, 2+12i, 9+24i, 5+12i]_1$ for $i=0,1,\ldots,t-1$,

 $[0, 6+12i, 16+24i, 8+12i, 20+24i, 11+12i]_1$ for $i=0,1,\ldots,t-2$ (omit if t=1), and $[0,\infty,12t-8,12t-3,12t-5,12t-2]_1$.

Case 2. If v = 6, consider the block $[0, \infty, 3, 1, 2, 4]_1$. Next suppose $v \equiv 6 \pmod{12}$, say v = 12t + 6, $t \ge 1$. Consider the blocks:

 $[0, 1+12i, 4+24i, 2+12i, 9+24i, 5+12i]_1$ for $i=0,1,\ldots,t-1$,

 $[0, 6+12i, 16+24i, 8+12i, 20+24i, 11+12i]_1$ for $i=0,1,\ldots,t-1$, and

 $[0, \infty, 12t - 3, 12t, 12t - 1, 12t + 1]_1$.

In both cases, the blocks, along with their images under β , form a rotational B_1 -decomposition of D_v .

Since B_2 is the converse of B_1 , the existence of a rotational B_1 —decomposition of D_v implies the existence of a rotational B_2 —decomposition of D_v (and conversely). We therefore have:

Theorem 3.8 A rotational B_2 -decomposition of D_v exists if and only if $v \equiv 0 \pmod{6}$.

We note that Theorems 2.7, 2.8, 3.7, and 3.8 combine to give the existence of a B_1 -or B_2 -decomposition of D_v when $v \equiv 0$ or 1 (mod 6). We leave the case $v \equiv 3$ (mod 6) open.

4 Related Results For Cycle Systems

The decomposition of a graph is defined similarly to the decomposition of a digraph, and an automorphism of a graph decomposition is analogous to an automorphism of a digraph decomposition. An n-cycle system of order v, denoted nCS(v), is a decomposition of K_v (the complete graph on v vertices) into cycles of length n. A 4CS(v) exists if and only if $v \equiv 1 \pmod{8}$ [12], a 6CS(v) exists if and only if $v \equiv 1$ or 19 (mod 12) [20], and an 8CS(v) exists if and only if $v \equiv 1 \pmod{16}$ [12]. For a survey of results on cycle systems see [13]. A cyclic 3-cycle system (or Steiner triple system) exists if and only if $v \equiv 1$ or 3 (mod 6), $v \neq 9$ [17]. Cyclic cycle systems in general are explored in [20] and [21]. We slightly generalize the idea of a rotational automorphism by defining a k-rotational automorphism as one consisting of a fixed point and k cycles each of length $\frac{v-1}{k}$. k-rotational 3CS(v)s are explored in [3, 19] in which the spectrum is determined for k = 1, 2, 3, 4, 6. An n-cycle system is said to be reverse if it admits an automorphism consisting of a fixed point and $\frac{v-1}{2}$ transpositions. A reverse 3CS(v) exists if and only if $v \equiv 1, 3, 9$ or 19 (mod 24) [8, 22, 24, 25]. In this section, we give necessary and sufficient conditions for the existence of k-rotational nCS(v)s and reverse nCS(v)s for all k and for n=4,6,8.

We consider k-rotational nCS(v)s on the point set $\{\infty\} \cup Z_N \times Z_k$, where $N = \frac{v-1}{k}$, and with automorphism $\pi_k = (\infty)(0_0, 1_0, \dots, (N-1)_0) \cdots (0_{k-1}, 1_{k-1}, \dots, (N-1)_{k-1})$, where we represent the ordered pair $(x, y) \in Z_N \times Z_k$ as x_y .

We will represent the 4-cycle

by any cyclic shift of (a, b, c, d) or (d, c, b, a). We have the following necessary condition:

Lemma 4.1 If a k-rotational 4CS(v) exists, then k is even.

Proof. Suppose there is a k-rotational 4CS(v) with point set and automorphism as described above. A set of n-cycles is said to be a set of base n-cycles for an nCS(v) under the automorphism π if the images of the n-cycles under the powers of π produce the nCS(v). For each $i \in Z_k$, there must be exactly one 4-cycle in a set of base 4-cycles under the automorphism π_k which contains the edge (∞, a_i) , for some $a \in Z_N$. Base 4-cycles containing ∞ must be of one of the following types:

1. (∞, x_i, y_i, z_j) where $i \neq j$, or

2. (∞, x_i, y_j, z_m) where i, j and m are distinct.

Each of these types of 4-cycles contains exactly two edges of the form (∞, a_i) where $a_i \in Z_N \times Z_k$. Therefore, k must be even.

Notice that the argument of Lemma 4.1 can be extended to show that if a k-rotational nCS(v) exists where n is even, then k must be even.

We can now establish sufficiency.

Lemma 4.2 A 2-rotational 4CS(v) exists if and only if $v \equiv 1 \pmod{8}$.

Proof. Suppose $v \equiv 1 \pmod{8}$, say v = 8t + 1. Let N = 4t. Consider the collection of 4-cycles:

 $(\infty, 0_0, t_1, (2t)_1), (0_0, t_0, (2t)_0, (3t)_0), (0_0, 0_1, (2t)_0, (2t)_1), (0_0, (3t)_1, t_1, (2t)_0), (0_0, i_1, (2i)_1, (2t+i)_0)$ for $i = 1, 2, \ldots, t-1$ (omit if t = 1), and

 $(0_0, (4t-i)_1, (2t)_1, i_0)$ for i = 1, 2, ..., t-1 (omit if t = 1).

These blocks, along with their images under π_2 , form a 2-rotational 4CS(v).

The results of Lemmas 4.1 and 4.2 allow us to establish necessary and sufficient conditions for the existence of a k-rotational 4CS(v), for all k.

Theorem 4.1 A k-rotational 4CS(v) exists if and only if $v \equiv 1 \pmod{8}$, k is even and $v \equiv 1 \pmod{k}$.

Proof. In light of Lemma 4.1, the necessary conditions follow trivially. Now suppose v and k satisfy the stated hypotheses. Then there is a 2-rotational 4CS(v) admitting

automorphism π_2 . Since $v \equiv 1 \pmod{k}$, we have $\pi_2^{k/2} = \pi_k$ and so the 2-rotational 4CS(v) is also k-rotational.

Theorem 4.1 immediately classifies reverse 4CS(v)s:

Corollary 4.1 A reverse 4CS(v) exists if and only if $v \equiv 1 \pmod{8}$.

We will represent the 6-cycle

by any cyclic shift of (a, b, c, d, e, f) or (f, e, d, c, b, a). We now consider k-rotational 6CS(v)s. As with Lemma 4.1, a necessary condition for the existence of a k-rotational 6CS(v) is that k is even.

We now establish sufficiency. In each of the constructions, we represent certain blocks with the following notation:

$$A_{j}(a,i) = (0_{j}, (a+6+12i)_{j}, (2a+8+24i)_{j}, (3a+8+36i)_{j}, (2a+4+24i)_{j}, (a+1+12i)_{j}),$$

$$B_{j}(b,i) = (0_{j}, (b+6+12i)_{j}, (2b+10+24i)_{j}, (3b+10+36i)_{j}, (2b+5+24i)_{j}, (b+2+12i)_{j}),$$

$$C(c,i) = (0_{0}, (c+6+12i)_{1}, 2_{0}, (c+4+12i)_{1}, 1_{0}, (c+1+12i)_{1}), \text{ and}$$

$$D(d,i) = (0_{0}, (d+6+12i)_{1}, 1_{0}, (d+5+12i)_{1}, 2_{0}, (d+2+12i)_{1}).$$

Lemma 4.3 If $v \equiv 1 \pmod{48}$ then there exists a 2-rotational 6CS(v).

```
Proof. First, suppose that v = 49. Consider the collection of 6-cycles:
```

$$(\infty, 3_0, 0_0, 2_1, 5_1, 11_1), (0_0, 6_0, 10_1, 22_1, 18_0, 12_0), (0_0, 11_1, 1_0, 8_1, 3_0, 9_1),$$

$$(0_0, 8_1, 8_0, 16_1, 16_0, 0_1), (0_0, 1_1, 2_1, 4_1, 1_0, 2_0), C(12, 0), D(17, 0),$$

$$(0_j, 4_j, 8_j, 12_j, 16_j, 20_j)$$
 for $j = 0, 1$, and $B_j(5, 0)$ for $j = 0, 1$.

Now suppose $v \equiv 1 \pmod{48}$, say v = 48t + 1 where t > 1. Consider the collection of 6-cycles:

$$(\infty, 3_0, 0_0, 2_1, 5_1, 9_1), (0_0, 4_0, 8_1, (12t + 8)_1, (12t + 4)_0, (12t)_0),$$

$$(0_0, (8t)_1, (8t)_0, (16t)_1, (16t)_0, 0_1), (0_0, 1_1, 2_1, 4_1, 1_0, 2_0),$$

$$(0_j, (4t)_j, (8t)_j, (12t)_j, (16t)_j, (20t)_j)$$
 for $j = 0, 1$,

along with

Case 1. if $t \equiv 0 \pmod{3}$, the 6-cycles

$$A_{j}(5,i)$$
 for $i = 0, 1, \ldots, \frac{t-3}{3}$ for $j = 0, 1$,
 $B_{j}(10,i)$ for $i = 0, 1, \ldots, \frac{t-6}{3}$ for $j = 0, 1$ (omit if $t = 3$),
 $(0_{j}, (4t+4)_{j}, (8t+6)_{j}, (12t+7)_{j}, (8t+1)_{j}, (4t-2)_{j})$ for $j = 0, 1$,
 $B_{j}(4t+5,i)$ for $i = 0, 1, \ldots, \frac{2t-3}{3}$ for $j = 0, 1$,
 $A_{j}(4t+12,i)$ for $i = 0, 1, \ldots, \frac{2t-6}{3}$ for $j = 0, 1$,

$$C(5,i)$$
 for $i=0,1,\ldots,\frac{2t-3}{3}$, $D(10,i)$ for $i=0,1,\ldots,\frac{2t-6}{3}$, $(0_0,(8t+6)_1,2_0,(8t+5)_1,4_0,(8t+2)_1)$, $D(8t+5,i)$ for $i=0,1,\ldots,\frac{4t-3}{3}$, and

```
C(8t+12,i) for i=0,1,\ldots,\frac{4t-6}{3};
Case 2, if t \equiv 1 \pmod{3}, t > 1, the 6-cycles
     A_{j}(5, i) for i = 0, 1, \dots, \frac{t-4}{3} for j = 0, 1, \dots
     B_j(10,i) for i=0,1,\ldots,\frac{3-7}{3} for j=0,1 (omit if t=4),
     (0_j, (4t+2)_j, (8t)_j, (12t-6)_j, (8t-7)_j, (4t-4)_j) for j=0,1,
     (0_j, (4t+7)_j, (8t+13)_j, (12t+12)_j, (8t+7)_j, (4t+3)_j) for j=0,1,
     A_{j}(4t+8,i) for i=0,1,\ldots,\frac{2t-5}{3} for j=0,1,
B_{j}(4t+13,i) for i=0,1,\ldots,\frac{2t-5}{3} for j=0,1,
C(5,i) for i=0,1,\ldots,\frac{2t-5}{3}, D(10,i) for i=0,1,\ldots,\frac{2t-5}{3},
     (0_0, (8t+3)_1, 1_0, (8t)_1, 3_0, (8t+1)_1), C(8t+4, i) for i = 0, 1, \ldots, \frac{4t-4}{3}, and
     D(8t+9,i) for i=0,1,\ldots,\frac{4t-4}{3};
Case 3. if t \equiv 2 \pmod{3}, the 6-cycles
     A_i(5,i) for i=0,1,\ldots,\frac{t-5}{3} for j=0,1 (omit if t=2),
     B_j(10, i) for i = 0, 1, \dots, \frac{3-5}{3} for j = 0, 1 (omit if t = 2),
     (0_j, (4t+3)_j, (8t+2)_j, (12\tilde{t})_j, (8t-2)_j, (4t-3)_j) for j=0,1,
    A_j(4t+4,i) for i=0,1,\ldots,\frac{2i-4}{3} for j=0,1,

B_j(4t+9,i) for i=0,1,\ldots,\frac{2t-4}{3} for j=0,1,
    C(5, i) for i = 0, 1, \ldots, \frac{2t-4}{3}, D(10, i) for i = 0, 1, \ldots, \frac{2t-7}{3} (omit if t = 2),
     (0_0, (8t+2)_1, 3_0, (8t)_1, 2_0, (8t-4)_1), D(8t+1, i) for i = 0, 1, \dots, \frac{4t-2}{3}, and
    C(8t+8,i) for i=0,1,\ldots,\frac{4t-5}{3}.
In each case, the blocks, along with their images under \pi_2, form a 2-rotational 6CS(v).
Lemma 4.4 If v \equiv 9 \pmod{24} then there exists a 2-rotational 6CS(v).
Proof. First, suppose that v = 9. Consider the collection of 6-cycles:
    (\infty, 0_0, 0_1, 1_0, 3_1, 2_1) and (0_0, 1_0, 2_1, 0_1, 3_0, 2_0).
Now, suppose v \equiv 9 \pmod{24}, say v = 24t + 9 where t > 0. Consider the collection
of 6-cycles:
    (\infty, 2_0, 0_0, 3_1, 4_1, 8_1), (0_0, 3_0, 4_0, 6_1, 3_1, 1_1), (0_0, 9_1, 15_1, 7_0, 17_1, 6_0),
    (0_0, 4_0, 4_1, (6t+6)_1, (6t+6)_0, (6t+2)_0), (0_0, 5_1, 10_1, 6_0, 12_1, 5_0),
    C(16, i) for i = 0, 1, ..., t - 2 (omit if t = 1),
    D(21, i) for i = 0, @1, ..., t - 2 (omit if t = 1),
along with
Case 1. if t \equiv 1 \pmod{2}, the 6-cycles
    (0_0, 13_1, 20_1, 8_0, 22_1, 7_0), A_j(8, i) for i = 0, 1, \dots, \frac{t-3}{2} for j = 0, 1 (omit if t = 1),
and
    B_j(13,i) for i=0,1,\ldots,\frac{t-3}{2} for j=0,1 (omit if t=1);
Case 2. if t \equiv 0 \pmod{2}, t > 0, the 6-cycles
    (0_0, 12_1, 20_1, 7_0, 22_1, 8_0), B_j(7, i) for i = 0, 1, \dots, \frac{i-2}{2} for j = 0, 1, and
    A_j(14,i) for i=0,1,\ldots,\frac{t-4}{2} for j=0,1 (omit if t=2).
In each case, the blocks, along with their images under \pi_2, form a 2-rotational 6CS(v).
```

Lemma 4.5 If $v \equiv 13 \pmod{48}$ then there exists a 2-rotational 6CS(v).

Proof. First, suppose that v = 13. Consider the collection of blocks:

```
(\infty, 0_0, 2_0, 0_1, 1_1, 3_1), (0_0, 1_0, 4_1, 1_1, 4_0, 3_0), (0_0, 1_1, 2_0, 3_1, 4_0, 5_1),
     and (0_0, 2_1, 2_0, 4_1, 4_0, 0_1).
Next, suppose that v = 61. Consider the collection of blocks:
      (\infty, 3_0, 0_0, 2_1, 5_1, 9_1), (0_0, 4_0, 21_1, 36_1, 19_0, 15_0), (0_0, 5_1, 11_1, 4_0, 10_1, 6_0),
     (0_0, 1_1, 2_1, 4_1, 1_0, 2_0), (0_0, 10_1, 10_0, 20_1, 20_0, 0_1), (0_0, 9_1, 16_1, 4_0, 15_1, 7_0),
     (0_j, 5_j, 10_j, 15_j, 20_j, 25_j) for j = 0, 1, B_j(8, 0) for j = 0, 1, (0_0, 14_1, 23_1, 7_0, 22_1, 9_0)
     C(18,0) for j=0,1, and D(23,0) for j=0,1.
Now, suppose v \equiv 13 \pmod{48}, say v = 48t + 13 where t > 1. Consider the collection
of 6-cycles:
     (\infty, 3_0, 0_0, 2_1, 5_1, 9_1), (0_0, 4_0, 21_1, (12t + 24)_1, (12t + 7)_0, (12t + 3)_0),
     (0_0, 1_1, 2_1, 4_1, 1_0, 2_0), (0_0, (8t+2)_1, (8t+2)_0, (16t+4)_1, (16t+4)_0, 0_1),
     (0_j, (4t+1)_j, (8t+2)_j, (12t+3)_j, (16t+4)_j, (20t+5)_j) for j=0,1,
     (0_0, 5_1, 10_1, 6_0, 12_1, 5_0), \ (0_0, 9_1, 15_1, 7_0, 17_1, 6_0), \ (0_0, 13_1, 20_1, 8_0, 22_1, 7_0),
along with
Case 1. if t \equiv 0 \pmod{3}, t > 0, the 6-cycles
     A_j(8,i) for i = 0, 1, \dots, \frac{t-3}{3} for j = 0, 1, \dots
    A_{j}(8,t) for i=0,1,\ldots,\frac{1-6}{3} for j=0,1 (omit if t=3), A_{j}(4t+3,i) for i=0,1,\ldots,\frac{2t-3}{3} for j=0,1, D(16,i) for i=0,1,\ldots,\frac{2t-6}{3}, C(23,i) for i=0,1,\ldots,\frac{2t-9}{3} (omit if t=3), D(16,i) for i=0,1,\ldots,\frac{2t-6}{3}, D(23,i) for i=0,1,\ldots,\frac{2t-9}{3} (omit if t=3), D(3,i) for i=0,1,\ldots,\frac{2t-6}{3}, D(3,i) for i=0,1,\ldots,\frac{2t-9}{3} (omit if t=3), D(3,i) for i=0,1,\ldots,\frac{4t-3}{3}, and D(3,i) for i=0,1,\ldots,\frac{4t-3}{3};
Case 2. if t \equiv 1 \pmod{3}, t > 1, the 6-cycles
     A_j(8,i) for i=0,1,\ldots,\frac{t-4}{3} for j=0,1,
     B_j(13,i) for i=0,1,\ldots,\frac{t-7}{3} for j=0,1 (omit if t=4),
     (0_j, (4t+7)_j, (8t+7)_j, (12t+4)_j, (8t+1)_j, (4t-1)_j) for j=0,1,
     (0_j, (4t+10)_j, (8t+16)_j, (12t+21)_j, (8t+12)_j, (4t+4)_j) for j=0,1,
     A_j(4t+11,i) for i=0,1,\ldots,\frac{2t-5}{3} for j=0,1,\ldots
     B_i(4t+16,i) for i=0,1,\ldots,\frac{2t-5}{3} for j=0,1,\ldots
     D(16, i) for i = 0, 1, \dots, \frac{2t-8}{3}, C(23, i) for i = 0, 1, \dots, \frac{2t-8}{3},
     (0_0, (8t+4)_1, 3_0, (8t+2)_1, 2_0, (8t-2)_1), D(8t+3, i) for i = 0, 1, \dots, \frac{4t-1}{3}, and
     C(8t+10,i) for i=0,1,\ldots,\frac{4t-4}{3};
Case 3. if t \equiv 2 \pmod{3}, the 6-cycles
     A_j(8,i) for i = 0, 1, \ldots, \frac{t-5}{3} for j = 0, 1 (omit if t = 2), B_j(13,i) for i = 0, 1, \ldots, \frac{t-5}{3} for j = 0, 1 (omit if t = 2),
     B_j(4t,i) for i=0,1,\ldots,\frac{3}{3} for j=0,1,\ldots
     A_j(4t+7,i) for i=0,1,\ldots,\frac{2t-4}{3} for j=0,1,

D(16,i) for i=0,1,\ldots,\frac{2t-7}{3} (omit if t=2),
     C(23, i) for i = 0, 1, \dots, \frac{2t-7}{3} (omit if t = 2), (0_0, (8t+8)_1, 2_0, (8t+7)_1, 3_0, (8t+3)_1),
     D(8t+7,i) for i=0,1,\ldots,\frac{4t-2}{3}, and C(8t+14,i) for i=0,1,\ldots,\frac{4t-5}{3}.
In each case, the blocks, along with their images under \pi_2, form a 2-rotational 6CS(v).
```

Lemma 4.6 If $v \equiv 21 \pmod{24}$ then there exists a 2-rotational 6CS(v).

Proof. Suppose $v \equiv 21 \pmod{24}$, say v = 24k + 21. Consider the collection of 6-cycles:

```
(0_0, 3_0, 2_0, 6_1, 4_1, 1_1), D(3, i) for i = 0, 1, \ldots, t,
```

```
C(10, i) for i = 0, 1, ..., t - 1 (omit if t = 0),
along with
Case 1. if t \equiv 0 \pmod{2}, the 6-cycles
     (\infty, 2_0, 0_0, 2_1, 3_1, 7_1), (0_0, 4_0, 4_1, (6t+9)_1, (6t+9)_0, (6t+5)_0),
     A_j(5,i) for i=0,1,\ldots,\frac{t-2}{2} for j=0,1 (omit if t=0), and B_j(10,i) for i=0,1,\ldots,\frac{t-2}{2} for j=0,1 (omit of t=0);
Case 2. if t \equiv 1 \pmod{2}, the 6-cycles
     (\infty, 2_0, 0_0, 2_1, 3_1, 8_1), (0_0, 5_0, 5_1, (6t+10)_1, (6t+10)_0, (6t+5)_0),
     (0_j, 4_j, 12_j, 22_j, 16_j, 9_j) for j = 0, 1,
     A_i(11,i) for i=0,1,\ldots,\frac{t-3}{2} for j=0,1 (omit if t=1), and
     B_{i}(16, i) for i = 0, 1, \dots, \frac{t-3}{2} for j = 0, 1 (omit if t = 1).
In each case, the blocks, along with their images under \pi_2, form a 2-rotational 6CS(v).
Lemma 4.7 If v \equiv 25 \pmod{48} then there exists a 2-rotational 6CS(v).
Proof. First suppose that v = 25. Consider the collection of blocks:
     (\infty, 0_0, 5_0, 11_1, 2_1, 7_1), (0_0, 3_0, 5_1, 11_1, 9_0, 6_0), (0_0, 1_1, 2_1, 6_1, 3_0, 4_0),
     (0_0, 4_1, 4_0, 8_1, 8_0, 0_1), D(5, 0), (0_j, 2_j, 4_j, 6_j, 8_j, 10_j) for j = 0, 1.
Now suppose v \equiv 25 \pmod{48}, say v = 48t + 25 where t > 0. Consider the collection
of 6-cycles:
     (\infty, 3_0, 0_0, 2_1, 5_1, 10_1), (0_0, 5_0, 9_1, (12t+15)_1, (12t+11)_0, (12t+6)_0),
     (0_0, 1_1, 2_1, 4_1, 1_0, 2_0), (0_0, (8t+4)_1, (8t+4)_0, (16t+8)_1, (16t+8)_0, 0_1),
     (0_j, (4t+2)_j, (8t+4)_j, (12t+6)_j, (16t+8)_j, (20t+10)_j) for j=0,1,
along with
Case 1. if t \equiv 0 \pmod{3}, t > 0, the 6-cycles
     B_j(4,i) for i=0,1,\ldots,\frac{t-3}{3} for j=0,1,
     A_{i}(11, i) for i = 0, 1, \dots, \frac{t-6}{3} for j = 0, 1 (omit if t = 3),
    (0_{j}, (4t+5)_{j}, (8t+6)_{j}, (12t+6)_{j}, (8t+2)_{j}, (4t-1)_{j}) \text{ for } j=0,1,
A_{j}(4t+6,i) \text{ for } i=0,1,\ldots,\frac{2t-3}{3} \text{ for } j=0,1,
B_{j}(4t+11,i) \text{ for } i=0,1,\ldots,\frac{2t-3}{3} \text{ for } j=0,1, C(5,i) \text{ for } i=0,1,\ldots,\frac{2t-3}{3},
D(10,i) \text{ for } i=0,1,\ldots,\frac{2t-6}{3}, (0_{0}, (8t+6)_{1}, 3_{0}, (8t+4)_{1}, 2_{0}, (8t)_{1}),
D(8t+5,i) \text{ for } i=0,1,\ldots,\frac{4t}{3}, \text{ and } C(8t+12,i) \text{ for } i=0,1,\ldots,\frac{4t-3}{3};
Case 2. if t \equiv 1 \pmod{3}, the 6-cycles
     B_j(4,i) for i=0,1,\ldots,\frac{t-4}{3} for j=0,1 (omit if t=1), A_j(11,i) for i=0,1,\ldots,\frac{t-4}{3} for j=0,1 (omit if t=1),
     (0_j, (4t+8)_j, (8t+13)_j, (12t+13)_j, (8t+7)_j, (4t+3)_j) for j=0,1,
     B_j(4t+7,i) for i=0,1,\ldots,\frac{2t-2}{3} for j=0,1,

A_j(4t+14,i) for i=0,1,\ldots,\frac{2t-5}{3} for j=0,1 (omit if t=1),
     C(5,i) for i=0,1,\ldots,\frac{2i-2}{3}, D(10,i) for i=0,1,\ldots,\frac{2i-5}{3} (omit if t=1),
     (0_0, (8t+10)_1, 2_0, (8t+9)_1, 3_0, (8t+5)_1), D(8t+9, i) for i = 0, 1, \ldots, \frac{4t-1}{3}, and
     C(8t+16,i) for i=0,1,\ldots,\frac{4t-4}{3};
Case 3. if t \equiv 2 \pmod{3}, the 6-cycles
     B_i(4,i) for i=0,1,\ldots,\frac{t-5}{3} for j=0,1 (omit if t=2),
     A_j(11,i) for i=0,1,\ldots,\frac{t-5}{3} for j=0,1 (omit if t=2),
     (0_j, (4t+4)_j, (8t+3)_j, (12t-1)_j, (8t-2)_j, (4t-2)_j) for j=0,1,
     B_i(4t+3,i) for i=0,1,\ldots,\frac{2t-1}{3} for j=0,1,
```

In each case, the blocks, along with their images under π_2 , form a 2-rotational 6CS(v).

As in Theorem 4.1, the results of Lemmas 4.3 to 4.8 allow us to establish necessary and sufficient conditions for the existence of a k-rotational 6CS(v), for all k.

Theorem 4.2 A k-rotational 6CS(v) exists if and only if $v \equiv 1$ or 9 (mod 12), k is even and $v \equiv 1 \pmod{k}$.

Theorem 4.2 immediately classifies reverse 6CS(v)s:

Corollary 4.2 A reverse 6CS(v) exists if and only if $v \equiv 1$ or 9 (mod 12).

We will represent the 8-cycle

by any cyclic shift of (a, b, c, d, e, f, g, h) or (h, g, f, e, d, c, b, a). We now consider k-rotational 8CS(v)s. Again, as with Lemma 4.1, a necessary condition for the existence of a k-rotational 8CS(v) is that k is even.

We now establish sufficiency for k = 2 in a series of lemmas.

Lemma 4.9 If $v \equiv 1 \pmod{64}$ then there exists a 2-rotational 8CS(v).

```
Proof. First suppose that v = 65. Consider the collection of 8-cycles:
          (\infty, 0_0, 4_0, 16_0, 31_1, 15_0, 0_1, 12_1), (0_0, 8_0, 8_1, 0_1, 16_1, 24_1, 24_0, 16_0),
          (0_1, 4_1, 8_1, 12_1, 16_1, 20_1, 24_1, 28_1), (0_0, 4_1, 8_0, 12_1, 16_0, 20_1, 24_0, 28_1),
           (0_0, 1_0, 16_0, 17_1, 15_0, 14_1, 15_1, 30_1), (0_0, 2_0, 16_0, 19_1, 14_0, 11_1, 13_1, 27_1),
          (0_0, 26_1, 3_0, 28_1, 4_0, 10_1, 2_0, 9_1), and (0_0, 22_1, 4_0, 25_1, 6_0, 16_1, 3_0, 14_1).
Now suppose v = 64t + 1 where t > 1. Consider the collection of 8-cycles:
          (\infty, 0_0, (4t)_0, (12t)_0, (28t-1)_1, (12t-1)_0, (28t)_1, (20t)_1),
          (0_0, (12t)_0, (12t)_1, 0_1, (16t)_1, (28t)_1, (28t)_0, (16t)_0),
          (0_1, (4t)_1, (8t)_1, (12t)_1, (16t)_1, (20t)_1, (24t)_1, (28t)_1),
          (0_0, (4t)_1, (8t)_0, (12t)_1, (16t)_0, (20t)_1, (24t)_0, (28t)_1),
          (0_0, (12t)_1, (24t)_0, (4t)_1, (16t)_0, (28t)_1, (8t)_0, (20t)_1),
          (0_0, 1_0, (16t)_0, (16t+1)_1, (16t-1)_0, (16t-2)_1, (16t-1)_1, (32t-2)_1),
          (0_0, 2_0, (16t)_0, (16t+3)_1, (16t-1)_0, (16t-4)_1, (16t-2)_1, (32t-4)_1),
          (0_i, (3+4s)_i, (7+8s)_i, (12+12s)_i, (18+16s)_i, (16t+15+12s)_i, (11+8s)_i, (16t+18s)_i, (16t
                 6+4s), for s=0,1,\ldots,t-2 and i=0,1,\ldots,t-2
          (0_i, (4t-1)_i, (8t)_i, (12t+2)_i, (16t+5)_i, (28t+6)_i, (8t+5)_i, (20t+3)_i) for i=0,1,
```

```
(0_i, (4t+4+4s)_i, (8t+9+8s)_i, (12t+15+12s)_i, (16t+22+16s)_i, (28t+18+16s)_i)
         (2s)_i, (8t+13+8s)_i, (20t+7+4s)_i) for s=0,1,\ldots,t-2 and i=0,1,1
      (0_0, (32t-5-4s)_1, 3_0, (32t-3-4s)_1, 4_0, (9+4s)_1, 2_0, (8+4s)_1) for s = 0, 1, \ldots, t-3
         (omit if t=2),
      (0_0, (28t+3)_1, 4_0, (28t+6)_1, 5_0, (4t+2)_1, 3_0, (4t+1)_1),
      (0_0, (28t-2-4s)_1, 3_0, (28t-4s)_1, 4_0, (4t+6+4s)_1, 2_0, (4t+5+4s)_1) for s=
        0, 1, \ldots, 2t-2,
      (0_0, (20t+2)_1, 4_0, (20t+5)_1, 6_0, (12t+4)_1, 3_0, (12t+2)_1), and
      (0_0, (20t-3-4s)_1, 3_0, (20t-1-4s)_1, 4_0, (12t+7+4s)_1, 2_0, (12t+6+4s)_1) for
         s = 0, 1, \ldots, t - 2.
  In both cases, the blocks, along with their images under \pi_2, form a 2-rotational
  8CS(v).
Lemma 4.10 If v \equiv 17 \pmod{64} then there exists a 2-rotational 8CS(v).
  Proof. First suppose that v = 17. Consider the collection of 8-cycles:
      (\infty, 0_0, 2_0, 5_0, 1_1, 3_0, 3_1, 6_1), (0_0, 1_0, 3_1, 1_1, 5_1, 7_1, 5_0, 4_0),
      (0_1, 1_1, 2_1, 3_1, 4_1, 5_1, 6_1, 7_1), (0_0, 1_1, 2_0, 3_1, 4_0, 5_1, 6_0, 7_1), and
      (0_0, 3_1, 6_0, 1_1, 4_0, 7_1, 2_0, 5_1).
  Now suppose v = 64t + 17 where t > 0. Consider the collection of 8-cycles:
      (\infty, 0_0, (4t+1)_0, (12t+3)_0, (28t+8)_1, (12t+4)_0, (28t+7)_1, (20t+5)_1),
     (0_0, (12t+3)_0, (12t+3)_1, 0_1, (16t+4)_1, (28t+7)_1, (28t+7)_0, (16t+4)_0),
      (0_1, (4t+1)_1, (8t+2)_1, (12t+3)_1, (16t+4)_1, (20t+5)_1, (24t+6)_1, (28t+7)_1)_1
     (0_0, (4t+1)_1, (8t+2)_0, (12t+3)_1, (16t+4)_0, (20t+5)_1, (24t+6)_0, (28t+7)_1)_1
     (0_0, (12t+3)_1, (24t+6)_0, (4t+1)_1, (16t+4)_0, (28t+7)_1, (8t+2)_0, (20t+5)_1)_1
     (0_i, (1+4s)_i, (3+8s)_i, (6+12s)_i, (10+16s)_i, (16t+13+12s)_i, (7+8s)_i, (16t+8+4s)_i)
        for s = 0, 1, ..., t - 1 and i = 0, 1, ..., t - 1
      (0_i, (4t+2+4s)_i, (8t+5+8s)_i, (12t+9+12s)_i, (16t+14+16s)_i, (28t+16+16s)_i)_i
        (2t+9+8s)_i, (20t+9+4s)_i) for s=0,1,\ldots,t-1 and i=0,1,1
     (0_0, (32t+7-4s)_1, 3_0, (1-4s)_1, 4_0, (5+4s)_1, 2_0, (4+4s)_1) for s=0,1,\ldots,t-1,
     (0_0, (28t+6-4s)_1, 3_0, (28t+8-4s)_1, 4_0, (4t+6+4s)_1, 2_0, (4t+5+4s)_1) for
       s = 0, 1, \ldots, 2t - 1,
     (0_0, (20t+6)_1, 4_0, (20t+8)_1, 5_0, (12t+7)_1, 2_0, (12t+6)_1), and
     (0_0, (20t+1-4s)_1, 3_0, (20t+3-4s)_1, 4_0, (12t+11+4s)_1, 2_0, (12t+10+4s)_1) for
        s = 0, 1, \dots, t - 2 (omit if t = 1).
 In both cases, the blocks, along with their images under \pi_2, form a 2-rotational
 8CS(v).
 Lemma 4.11 If v \equiv 33 \pmod{64} then there exists a 2-rotational 8CS(v).
```

```
Proof. First suppose that v = 33. Consider the collection of 8-cycles:
    (\infty, 0_0, 2_0, 6_0, 13_1, 5_0, 14_1, 2_1), (0_0, 6_0, 6_1, 0_1, 8_1, 14_1, 14_0, 8_0),
    (0_1, 2_1, 4_1, 6_1, 8_1, 10_1, 12_1, 14_1), (0_0, 2_1, 4_0, 6_1, 8_0, 10_1, 12_0, 14_1),
    (0_0, 6_1, 12_0, 2_1, 8_0, 14_1, 4_0, 10_1), (0_0, 1_0, 8_0, 9_1, 6_0, 5_1, 6_1, 13_1), and
    (0_0, 3_0, 8_0, 12_1, 7_0, 3_1, 6_1, 11_1).
Now suppose v = 64t + 33 where t > 0. Consider the collection of 8-cycles:
    (\infty, 0_0, (4t+2)_0, (12t+6)_0, (28t+13)_1, (12t+5)_0, (28t+14)_1, (20t+10)_1)_1
```

```
(0_0, (12t+6)_0, (12t+6)_1, 0_1, (16t+8)_1, (28t+14)_1, (28t+14)_0, (16t+8)_0),
       (0_1, (4t+2)_1, (8t+4)_1, (12t+6)_1, (16t+8)_1, (20t+10)_1, (24t+12)_1, (28t+14)_1),
       (0_0, (4t+2)_1, (8t+4)_0, (12t+6)_1, (16t+8)_0, (20t+10)_1, (24t+12)_0, (28t+14)_1),
        (0_0, (12t+6)_1, (24t+12)_0, (4t+2)_1, (16t+8)_0, (28t+14)_1, (8t+4)_0, (20t+10)_1),
       (0_0, 1_0, (16t + 8)_0, (16t + 9)_1, (16t + 7)_0, (16t + 6)_1, (16t + 7)_1, (32t + 14)_1),
       (0_0, 2_0, (16t+8)_0, (16t+11)_1, (16t+7)_0, (16t+4)_1, (16t+6)_1, (32t+12)_1),
       (0_i, (3+4s)_i, (7+8s)_i, (12+12s)_i, (18+16s)_i, (16t+23+12s)_i, (11+8s)_i, (16t+23+12s)_i, (16t+25+12s)_i, (16t+25+12s)_i, (16t+25+12s)_i, (16t+25+12s)_i, (16t+25+12s)_i, (16t+25+12s)_i, (16t+25+12s)_i,
              (14+4s)_i) for s=0,1,\ldots,t-2 and i=0,1 (omit if t=1),
       (0_i, (4t-1)_i, (8t-1)_i, (12t)_i, (16t+3)_i, (28t+12)_i, (8t+4)_i, (20t+11)_i) for i=0,1,
       (0_i, (4t+4+4s)_i, (8t+9+8s)_i, (12t+15+12s)_i, (16t+22+16s)_i, (28t+26+16s)_i)
              (2s)_i, (8t+13+8s)_i, (20t+15+4s)_i) for s=0,1,\ldots,t-1 and i=0,1,1
       (0_0, (32t+11-4s)_1, 3_0, (32t+13-4s)_1, 4_0, (9+4s)_1, 2_0, (8+4s)_1) for s = 0, 1, \dots, t-2
              (omit if t=1),
       (0_0, (28t+15)_1, 4_0, (28t+17)_1, 5_0, (4t+6)_1, 2_0, (4t+5)_1),
       (0_0, (28t+10-4s)_1, 3_0, (28t+12-4s)_1, 4_0, (4t+10+4s)_1, 2_0, (4t+9+4s)_1) for
              s = 0, 1, \dots, 2t - 1, and
      (0_0, (20t+9-4s)_1, 3_0, (20t+11-4s)_1, 4_0, (12t+11+4s)_1, 2_0, (12t+10+4s)_1) for
              s = 0, 1, \dots, t - 1.
In both cases, the blocks, along with their images under \pi_2, form a 2-rotational
8CS(v).
```

Lemma 4.12 If $v \equiv 49 \pmod{64}$ then there exists a 2-rotational 8CS(v).

```
Proof. Suppose v = 64t + 49 where t \ge 0. Consider the collection of 8-cycles:
   (\infty, 0_0, (4t+3)_0, (12t+9)_0, (28t+20)_1, (12t+8)_0, (28t+21)_1, (20t+15)_1),
  (0_0, (12t+9)_0, (12t+9)_1, 0_1, (16t+12)_1, (28t+3)_1, (28t+3)_0, (16t+12)_0),
  (0_1, (4t+3)_1, (8t+6)_1, (12t+9)_1, (16t+12)_1, (20t+15)_1, (24t+18)_1, (28t+21)_1),
  (0_0, (4t+3)_1, (8t+6)_0, (12t+9)_1, (16t+12)_0, (20t+15)_1, (24t+18)_0, (28t+21)_1),
  (0_0, (12t+9)_1, (24t+18)_0, (4t+3)_1, (16t+12)_0, (28t+21)_1, (8t+6)_0, (20t+15)_1),
  (0_i, (1+4s)_i, (3+8s)_i, (6+12s)_i, (10+16s)_i, (16t+21+12s)_i, (7+8s)_i, (16t+16+4s)_i)
     for s = 0, 1, ..., t - 1 and i = 0, 1 (omit if t = 0),
  (0_i, (4t+1)_i, (8t+3)_i, (12t+7)_i, (16t+12)_i, (28t+23)_i, (8t+9)_i, (20t+17)_i) for
     i = 0, 1,
  (0_i, (4t+6+4s)_i, (8t+13+8s)_i, (12t+21+12s)_i, (16t+30+16s)_i, (28t+36+16s)_i)
     (2s)_i, (8t+17+8s)_i, (20t+21+4s)_i) for s=0,1,\ldots,t-1 and i=0,1 (omit
     if t = 0,
  (0_0, (32t+23-4s)_1, 3_0, (32t+25-4s)_1, 4_0, (5+4s)_1, 2_0, (4+4s)_1) for s = 0, 1, \dots, t-1
     (omit if t=0),
  (0_0, (28t+23)_1, 4_0, (28t+26)_1, 6_0, (4t+7)_1, 3_0, (4t+5)_1),
  (0_0, (28t+18-4s)_1, 3_0, (28t+20-4s)_1, 4_0, (4t+10+4s)_1, 2_0, (4t+9+4s)_1) for
     s = 0, 1, \dots, 2t - 1 (omit if t = 0),
  (0_0, (20t+18)_1, 4_0, (20t+21)_1, 5_0, (12t+11)_1, 3_0, (12t+10)_1), and
  (0_0, (20t+13-4s)_1, 3_0, (20t+15-4s)_1, 4_0, (12t+15+4s)_1, 2_0, (12t+14+4s)_1)
     for s = 0, 1, ..., t - 1 (omit if t = 0).
These blocks, along with their images under \pi_2, form a 2-rotational 8CS(v).
```

As in Theorem 4.1, the results of Lemmas 4.9 to 4.12 allow us to establish necessary

and sufficient conditions for the existence of a k-rotational 8CS(v), for all k.

Theorem 4.3 A k-rotational 8CS(v) exists if and only if $v \equiv 1 \pmod{16}$, k is even and $v \equiv 1 \pmod{k}$.

Theorem 4.3 immediately classifies reverse 8CS(v)s:

Corollary 4.3 A reverse 8CS(v) exists if and only if $v \equiv 1 \pmod{16}$.

Acknowledgements

It has been pointed out to the authors that Biagio Micale and Mario Pennisi have independently obtained some of the results of Section 2 and they are to appear in *Utilitas Mathematica*.

References

- [1] B. Alspach, K. Heinrich, and B. Varma, Decompositions of the complete symmetric digraph into the oriented pentagons, J. Australian Math. Society (Series A) 28 (1979), 353-361.
- [2] J. Bermond, C. Huang, and D. Sotteau, Balanced cycle and circuit designs: odd cases, *Proc. Colloq. Oberhof Illmenau* (1978), 11-32.
- [3] C. Cho, Rotational Steiner triple systems, Discrete Math. 42 (1982), 153-159.
- [4] C. Cho, Rotational Mendelsohn triple systems, Kyungpook Math. J. 20 (1986), 5-9.
- [5] C. Cho, Rotational directed triple systems, J. Korean Math. Society 24(2) (1987), 133-142.
- [6] C. Colbourn and M. Colbourn, Disjoint cyclic Mendelsohn triple systems, Ars Combinatoria 11 (1981), 3-8.
- [7] M. Colbourn and C. Colbourn, The analysis of directed triple systems by refinement, Annals of Discrete Math. 15 (1982), 97-103.
- [8] J. Doyen, A note on reverse Steiner triple systems, Discrete Math. 1 (1972), 315-319.
- [9] F. Harary, E. Palmer, and C. Smith, Which graphs have self-converse orientations?, Canadian Math. Bulletin 10 (1967), 425-429.
- [10] F. Harary, W. Wallis, and K. Heinrich, Decompositions of complete symmetric digraphs into the four oriented quadrilaterals, Combinatorial Mathematics in Lecture Notes in Mathematics #686, Springer-Verlag, 1978.
- [11] S. Hung and N. Mendelsohn, Directed triple systems, J. Combin. Theory Series A 14 (1973), 310-318.

- [12] A. Kotzig, On decompositions of the complete graph into 4k-gons, Matematicko-Fyzikálny Časopis Sav 15 (1965), 227-233.
- [13] C. Lindner and C. Roger, Decompositions into cycles II: Cycle systems, in Contemporary Design Theory: A Collection of Surveys, eds. J. Dinitz and D. Stinson, John Wiley, New York, 1992.
- [14] N. Mendelsohn, A natural generalization of Steiner triple systems, Computers in Number Theory, eds. A. O. Atkin and B. Birch, Academic Press, London, 1971.
- [15] B. Micale and M. Pennisi, Constructions of cyclic Mendelsohn designs, Australasian J. Combin. 5 (1992), 169-177.
- [16] B. Micale and M. Pennisi, Cyclic Mendelsohn quadruple systems, Ars Combinatoria 35 (1993), 225-236.
- [17] R. Peltesohn, A solution to both of Heffter's difference problems (in German), Compositio Math. 6 (1939), 251-257.
- [18] M. Pennisi, On the rotational Mendelsohn designs, J. Combinatorics, Information and Systems Sciences, to appear.
- [19] K. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57-66.
- [20] A. Rosa, On cyclic decompositions of the complete graph into (4m+2)—gons, Matematicko-Fyzikálny Časopis Sav 16(4) (1966), 349-352.
- [21] A. Rosa, On the cyclic decompositions of the complete graph into polygons with odd number of edges, Časopis pro pěstování matematiky 91 (1966), 53-63 (in Slovak).
- [22] A. Rosa, On reverse Steiner triple systems, Discrete Math. 1 (1972), 61-71.
- [23] J. Schönheim, Partition of the edges of the directed complete graph into 4-cycles, *Discrete Math.* 11 (1975), 67-70.
- [24] L. Teirlinck, The existence of reverse Steiner triple systems, *Discrete Math.* 6 (1973), 301-302.
- [25] L. Teirlinck, A simplification of the proof of the existence of reverse Steiner triple systems of order congruent to 1 modulo 24, Discrete Math. 13 (1975), 297-298.
- [26] B. Varma, Decompositions of complete symmetric digraphs into orientations of a cycle of length k: odd and even cases, Congressus Numerantium 91 (1992), 239-253.