Reverse Directed Triple Systems

Rebecca Calahan-Zijlstra
Department of Mathematics and Statistics
Middle Tennessee State University
Murfreesboro, Tennessee 37312

Robert B. Gardner*
Department of Mathematics
East Tennessee State University
Johnson City, Tennessee 37614

ABSTRACT. A directed triple system of order \(v \) and index \(\lambda \), denoted \(DTS_\lambda(v) \), is said to be reverse if it admits an automorphism consisting of \(\frac{v}{2} \) transpositions when \(v \) is even, or a fixed point and \(\left(v - 1 \right)/2 \) transpositions when \(v \) is odd. We give necessary and sufficient conditions for the existence of a reverse \(DTS_\lambda(v) \) for all \(\lambda \geq 1 \).

1 Introduction

A directed triple system of order \(v \) and index \(\lambda \), denoted \(DTS_\lambda(v) \), is a \(v \)-element set \(X \), of points, together with a set \(B \), of ordered triples of elements of \(X \), called blocks, such that any ordered pair of points of \(X \) occurs in exactly \(\lambda \) blocks of \(B \). The notation \([x, y, z]\) will be used for the block containing the ordered pairs \((x, y)\), \((x, z)\), and \((y, z)\). Hung and Mendelsohn [6] introduced directed triple systems as a generalization of Steiner triple systems and showed that a \(DTS_1(v) \) exists if and only if \(v \equiv 0 \) or \(1 \pmod{3} \). Seberry and Skillicorn [8] proved that a \(DTS_\lambda(v) \) exists if and only if \(\lambda v(v - 1) \equiv 0 \pmod{3} \), \(v \neq 2 \).

An automorphism of a \(DTS_\lambda(v) \) is a permutation of \(X \) which fixes \(B \). The orbit of a block under an automorphism \(\pi \) is the image of the block under the powers of \(\pi \). A collection of blocks \(\beta \) is said to be a collection

*Research supported by ETSU under RDC grant #94-105/M.
of base blocks for a $DTS_{\lambda}(v)$ under the permutation π if the orbits of the blocks of β produce the $DTS_{\lambda}(v)$.

Several types of automorphisms have been explored in connection with the problem of determining the values v for which there are certain types of block designs of order v admitting the automorphism. In particular, a cyclic $DTS_{\lambda}(v)$ admits an automorphism consisting of a single cycle of length v and exists if and only if $[2, 4]$:

1. $\lambda \equiv 0 \pmod{6}$ and $v \neq 2$, or
2. $\lambda \equiv 1$ or $5 \pmod{6}$ and $v \equiv 1, 4 \pmod{12}$, or
3. $\lambda \equiv 2$ or $4 \pmod{6}$ and $v \equiv 1 \pmod{3}$, or
4. $\lambda \equiv 3 \pmod{6}$ and $v \equiv 0, 1 \pmod{4}$.

A $DTS_{\lambda}(v)$ which admits an automorphism consisting of a fixed point and k cycles of length $(v - 1)/k$ is said to be k-rotational. A k-rotational $DTS_{\lambda}(v)$ exists if and only if $\lambda v \equiv 0 \pmod{3}$ and $v \equiv 1 \pmod{k}$ [1]. A 1-rotational $DTS_{\lambda}(v)$ exists if and only if $\lambda v \equiv 0 \pmod{3}$ and $v \geq 3$ [3]. These two results, along with the observation that $\lambda kv \equiv 0 \pmod{3}$ is a necessary condition for the existence of a k-rotational $DTS_{\lambda}(v)$, yield:

Corollary 1.1. A k-rotational $DTS_{\lambda}(v)$ exists if and only if $\lambda kv \equiv 0 \pmod{3}$, $v \equiv 1 \pmod{k}$ and $v \geq 3$.

Steiner triple systems, denoted STS, have been extensively explored in connection with these types of questions. In particular, a reverse $STS(v)$ admits an automorphism consisting of a fixed point and $(v - 1)/2$ transpositions. A reverse $STS(v)$ exists if and only if $v \equiv 1, 3, 9 \text{ or } 19 \pmod{24}$ [5, 7, 9, 10]. With this result as motivation, we define a reverse $DTS_{\lambda}(v)$ to be one admitting an automorphism consisting of a fixed point and $(v - 1)/2$ transpositions if v is odd, or $v/2$ transpositions if v is even. The purpose of this paper is to use the above mentioned results along with some new constructions to give necessary and sufficient conditions for the existence of a reverse $DTS_{\lambda}(v)$ for all $\lambda \geq 1$. We will take advantage of the fact that if there exists a $DTS_{\lambda_1}(v)$ and a $DTS_{\lambda_2}(v)$ both of which admit π as an automorphism, then there exists a $DTS_{\lambda_1+\lambda_2}(v)$ admitting π as an automorphism.

2 Reverse Directed Triple Systems With $\lambda = 1$

In this section and the next section we will deal with reverse $DTS_{\lambda}(v)$ on the set $X = \{a, b\} \times \mathbb{Z}/2$ admitting the automorphism $\pi = (a_0, b_0)(a_1, b_1) \cdots (a_{v/2-1}, b_{v/2-1})$. We represent the ordered pair (x, y) as x_y.

180
Lemma 2.1. If a reverse $DTS_\lambda(v)$ exists where v is even, then $\lambda v(v-4) \equiv 0 \pmod{24}$.

Proof: Each block of such a $DTS_\lambda(v)$ must be of one of the following forms:

1. $[a_i, a_j, a_k]$ or $[b_i, b_j, b_k]$ where i, j, k are distinct,
2. $[a_i, b_j, b_k]$ or $[b_i, a_j, a_k]$ where $j \neq k$,
3. $[a_i, b_j, a_k]$ or $[b_i, a_j, b_k]$ where $i \neq k$, or
4. $[a_i, a_j, b_k]$ or $[b_i, b_j, a_k]$ where $i \neq j$.

Let r be the number of blocks of type 1, s the number of type 2, t the number of type 3, and u the number of type 4. Notice that r, s, t and u are all even. The number of blocks in a $DTS_\lambda(v)$ is $\lambda v(v-1)/3$ so $r + s + t + u = \lambda v(v-1)/3$. In this $DTS_\lambda(v)$ there is a total of $\lambda v(v-2)/2$ pairs of the form (a_i, a_j) where $\alpha \in \{a, b\} \setminus \{i \neq j\}$. Blocks of the first type each contain 3 such pairs, blocks of the second, third and fourth types each contain 1 such pair. So $3r + s + t + u = \lambda v(v-2)/2$. So $r = \lambda v(v-4)/12$ where r is even.

The conditions for the existence of a $DTS_1(v)$ along with Lemma 2.1 imply that the necessary conditions for the existence of a reverse $DTS_1(v)$ are $v \equiv 0, 1, 3, 4, 7, 9 \pmod{12}$. We now show that these necessary conditions are sufficient.

Theorem 2.1. A reverse $DTS_1(v)$ exists if and only if $v \equiv 0, 1, 3, 4, 7, 9 \pmod{12}$.

Proof: For sufficiency, we present five cases.

Case 1. Suppose that $v \equiv 1$ or $3 \pmod{6}$. Then there exists a $(v-1)/2$–rotational $DTS_1(v)$ by Corollary 1.1. This $DTS_1(v)$ is clearly also reverse.

Case 2. Suppose that $v \equiv 4 \pmod{12}$. Then there exists a cyclic $DTS_1(v)$ admitting an automorphism α which consists of a single cycle of length v. The automorphism $\alpha^{v/2}$ consists of $v/2$ transpositions and therefore this $DTS_1(v)$ is also reverse.

Case 3a. Suppose that $v = 24$. Let α be the permutation $(a_0, a_1, \ldots, a_9, b_0, b_1, \ldots, b_9) (a_{10}, a_{11}, b_{10}, b_{11})$. Consider the blocks:

$[\alpha^j(a_{10}), \alpha^j(a_{11}), \alpha^j(b_{11})]$ for $j = 0, 1, 2, 3$, and

$[\alpha^j(a_{10}), \alpha^j(a_1), \alpha^j(a_0)], [\alpha^j(a_2), \alpha^j(a_0), \alpha^j(a_{10})], [\alpha^j(a_1), \alpha^j(a_{10}), \alpha^j(b_8)],$
$[\alpha^j(a_3), \alpha^j(a_{10}), \alpha^j(b_9)], [\alpha^j(a_0), \alpha^j(a_1), \alpha^j(a_8)], [\alpha^j(a_0), \alpha^j(a_2), \alpha^j(b_5)],$
$[\alpha^j(a_0), \alpha^j(a_3), \alpha^j(b_2)], [\alpha^j(a_0), \alpha^j(a_4), \alpha^j(b_4)], [\alpha^j(a_0), \alpha^j(a_8), \alpha^j(b_1)]$

for $j = 0, 1, \ldots, 19$.

181
These blocks form a collection of base blocks for a reverse $DTS_1(24)$ under π.

Case 3b. Suppose that $v \equiv 0 \pmod{24}$, $v \neq 24$. Let $v = 24t$, $t \geq 2$, and let α be the permutation $(a_0, a_1, \ldots, a_{12t-3}, b_0, b_1, \ldots, b_{12t-3})(a_{12t-2}, a_{12t-1}, b_{12t-2}, b_{12t-1})$. Consider the blocks:

\[[\alpha^j(a_{12t-2}), \alpha^j(a_{12t-1}), \alpha^j(b_{12t-1})] \text{ for } j = 0, 1, 2, 3, \]
\[[\alpha^j(a_{12t-2}), \alpha^j(a_1), \alpha^j(a_0)] \text{ and } [\alpha^j(a_2), \alpha^j(a_0), \alpha^j(a_{12t-2})] \]
for $j = 0, 1, \ldots, 24t - 5$,
\[[\alpha^j(a_1), \alpha^j(a_{12t-2}), \alpha^j(b_{12t-4})] \text{ for } j = 0, 1, \ldots, 24t - 5, \]
\[[\alpha^j(a_3), \alpha^j(a_{12t-2}), \alpha^j(b_{12t-3})] \text{ for } j = 0, 1, \ldots, 24t - 5, \]
\[[\alpha^j(a_0), \alpha^j(a_1), \alpha^j(a_{10t-2})] \text{ and } [\alpha^j(a_0), \alpha^j(a_{8t-3}), \alpha^j(b_{8t-5})] \]
for $j = 0, 1, \ldots, 24t - 5$,
\[[\alpha^j(a_0), \alpha^j(a_{4t-3}), \alpha^j(b_{4t-4})] \text{ for } j = 0, 1, \ldots, 24t - 5, \]
\[[\alpha^j(a_0), \alpha^j(a_{8t-4-2t}), \alpha^j(b_{12t-7-i})] \text{ for } i = 0, 1, \ldots, 4t - 3 \]
and $j = 0, 1, \ldots, 24t - 5$,
\[[\alpha^j(a_0), \alpha^j(a_{8t-5-2t}), \alpha^j(b_{4t-5-i})] \text{ for } i = 0, 1, \ldots, 2t - 2 \]
and $j = 0, 1, \ldots, 24t - 5$,
\[[\alpha^j(a_0), \alpha^j(a_{4t-5-2t}), \alpha^j(b_{2t-4-i})] \text{ for } i = 0, 1, \ldots, 2t - 4 \]
and $j = 0, 1, \ldots, 24t - 5$.

These blocks form a collection of base blocks for a reverse $DTS_1(v)$ under π.

Case 4. Suppose that $v \equiv 12 \pmod{48}$. Let $v = 48t + 12$. Consider the blocks:

\[[a_i, a_{8t+2+i}, a_{16t+4+i}] \text{ and } [a_{16t+4+i}, a_{8t+2+i}, a_i] \text{ for } i = 0, 1, \ldots, 8t + 1, \]
\[[a_i, a_{10t+2+i}, a_{14t+2+i}] \text{ for } i = 0, 1, \ldots, 24t + 5 \text{ (omit if } t = 0), \]
\[[a_i, a_{6t-2j+i}, a_{6t+2+2j+i}] \text{ for } i = 0, 1, \ldots, 24t + 5 \text{ and } j = 0, 1, \ldots, t - 1 \]
(omit if $t = 0$),
\[[a_i, a_{10t-2j+i}, a_{10t+4+2j+i}] \text{ for } i = 0, 1, \ldots, 24t + 5 \text{ and } j = 0, 1, \ldots, t - 2 \]
(omit if $t = 0$),
\[[a_i, a_{14t+4+2j+i}, a_{14t-2j+i}] \text{ for } i = 0, 1, \ldots, 24t + 5 \text{ and } j = 0, 1, \ldots, t - 1 \]
(omit if $t = 0$),
\[[a_i, a_{18t+6+2j+i}, a_{18t+4-2j+i}] \text{ for } i = 0, 1, \ldots, 24t+5 \text{ and } j = 0, 1, \ldots, t-1 \]
(omit if $t = 0$),
\[[a_i, b_{6t+i-1-j+i}, b_{6t+2+j+i}] \text{ for } i = 0, 1, \ldots, 24t + 5 \text{ and } j = 0, 1, \ldots, 6t + 1, \]
\[[a_i, b_{18t+i+6-j+i}, b_{18t+i+4-j+i}] \text{ for } i = 0, 1, \ldots, 24t + 5 \text{ and } j = 0, 1, \ldots, 6t. \]

These blocks form a collection of base blocks for a reverse \(DTS_1(v) \) under \(\pi \).

Case 5. Suppose that \(v \equiv 36 \pmod{48} \). Let \(v = 48t + 36 \). Consider the blocks:

\[[a_i, a_{6t+6+i}, a_{16t+12+i}] \text{ and } [a_i, a_{6t+12+i}, a_{6t+6+i}, a_i] \text{ for } i = 0, 1, \ldots, 8t + 5, \]
\[[a_i, a_{6t+5+i}, a_{10t+8+i}] \text{ for } i = 0, 1, \ldots, 24t + 17, \]
\[[a_i, a_{6t+3-j+i}, a_{6t+6+j+i}] \text{ for } i = 0, 1, \ldots, 24t + 17 \text{ and } j = 0, 1, \ldots, 2t - 1 \]
(omit if \(t = 0 \)),
\[[a_i, a_{10t+7-j+i}, a_{10t+9+j+i}] \text{ for } i = 0, 1, \ldots, 24t + 17 \text{ and } j = 0, 1, \ldots, 2t, \]
\[[a_i, b_{12t+8+i}, b_{18t+i+12+i}] \text{ for } i = 0, 1, \ldots, 24t + 17, \]
\[[a_i, b_{22t+15+i}, b_{22t+16+i}] \text{ for } i = 0, 1, \ldots, 24t + 17, \]
\[[a_i, b_{6t+14-j+i}, b_{6t+3-j+i}] \text{ for } i = 0, 1, \ldots, 24t + 17 \text{ and } j = 0, 1, \ldots, 6t + 3, \]
\[[a_i, b_{18t+i+13+j+i}, b_{18t+i+11-j+i}] \text{ for } i = 0, 1, \ldots, 24t + 17 \text{ and } j = 0, 1, \ldots, 4t + 1, \]
\[[a_i, b_{22t+17+j+i}, b_{14t+9-j+i}] \text{ for } i = 0, 1, \ldots, 24t + 17 \text{ and } j = 0, 1, \ldots, 2t. \]

These blocks form a collection of base blocks for a reverse \(DTS_1(v) \) under \(\pi \).

3 Reverse Directed Triple Systems With \(\lambda > 1 \)

Finally, we give necessary and sufficient conditions for the existence of a reverse \(DTS_\lambda(v) \) where \(\lambda > 1 \).

Theorem 3.1. A reverse \(DTS_\lambda(v) \), where \(v \) is odd, exists if and only if \(\lambda v(v-1) \equiv 0 \pmod{3} \). A reverse \(DTS_\lambda(v) \), where \(v \) is even, exists if and only if \(\lambda v(v-1) \equiv 0 \pmod{3} \) and \(\lambda v(v-4) \equiv 0 \pmod{24} \), \(v \neq 2 \).

Proof: The necessary conditions follow from the conditions for the existence of a \(DTS_\lambda(v) \) along with Lemma 2.1. We show sufficiency in the following cases.

Case 1. Suppose that \(v \equiv 0, 1, 3, 4, 7, \) or \(9 \pmod{12} \). Then there exists a reverse \(DTS_1(v) \) by Theorem 2.1. Therefore there exists a reverse \(DTS_\lambda(v) \) for all \(\lambda \geq 1 \).
Case 2. Suppose that $v \equiv 2 \pmod{12}$. Then it is necessary that $\lambda \equiv 0 \pmod{6}$. In this case, there is a $DTS_{\lambda}(v)$ admitting a cyclic automorphism α. The automorphism $\alpha^{v/2}$ consists of $v/2$ transpositions and therefore this $DTS_{\lambda}(v)$ is also reverse.

Case 3. Suppose that $v \equiv 5 \pmod{6}$. Then there exists a $(v-1)/2$-rotational $DTS_{\lambda}(v)$ by Corollary 1.1. This $DTS_{\lambda}(v)$ is clearly reverse.

Case 4a. Suppose that $v = 6$. Consider the blocks:

\[
[a_0, b_1, a_2], \ [a_1, b_0, a_2], \ [a_2, b_0, a_1], \ [a_1, a_0, b_0], \ [a_2, a_1, b_1], \\
[a_2, a_0, b_2], \ [b_1, a_0, a_1], \ [b_2, a_1, a_2], \ [b_0, a_2, a_0], \ [a_0, a_1, a_2].
\]

These blocks form a collection of base blocks for a reverse $DTS_2(6)$. Therefore there exists a reverse $DTS_{\lambda}(6)$ for all $\lambda \equiv 0 \pmod{2}$.

Case 4b. Suppose that $v \equiv 6 \pmod{24}$, $v \neq 6$, say $v = 24t + 6$, $t \geq 1$. Consider the blocks:

\[
[a_i, a_{6t+j+i}, a_{6t+1+j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, t - 1, \\
[a_i, a_{5t+j+i}, a_{7t+3+j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, t - 2 \\
\text{(omit if } t = 1), \\
[a_i, a_{2+2j+i}, a_{10t+3+j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, 2t - 2, \\
[a_i, a_{7t+2+i}, a_{7t+1+i}] \text{ for } i = 0, 1, \ldots, 12t + 2, \\
[a_i, a_{4t+1+i}, a_{8t+2+i}] \text{ and } [a_i, a_{8t+2+i}, a_{4t+1+i}] \text{ for } i = 0, 1, \ldots, 8t + 1, \\
[a_i, b_{10t+3+j+i}, a_{8t+4+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, 4t - 1, \\
[a_i, b_{2t+1+j+i}, a_{4t+2+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, 2t - 1, \\
[a_i, b_{4t+4+j+i}, a_{8t+3+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, 2t - 1, \\
[a_i, b_{6t+2+j+i}, a_{2+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, 2t - 1, \\
[a_i, b_{8t+3+j+i}, a_{4t+3+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 2 \text{ and } j = 0, 1, \ldots, 2t - 1, \\
[a_i, b_{10t+3+i}, b_{2+i}] \text{ for } i = 0, 1, \ldots, 12t + 2, \\
[a_i, b_{4t+1+i}, b_{6t+2+i}] \text{ for } i = 0, 1, \ldots, 12t + 2, \text{ and} \\
[a_i, b_{8t+2+i}, b_{6t+1+i}] \text{ for } i = 0, 1, \ldots, 12t + 2.
\]

These blocks form a collection of base blocks for a reverse $DTS_2(v)$. Therefore there exists a reverse $DTS_{\lambda}(v)$ for all $\lambda \equiv 0 \pmod{2}$.

Case 5. Suppose that $v \equiv 8 \pmod{12}$. Then it is necessary that $\lambda \equiv 0 \pmod{3}$. Under these conditions, there is a cyclic $DTS_{\lambda}(v)$ and this $DTS_{\lambda}(v)$ is also reverse by the argument of Case 2.
Case 6. Suppose that \(v \equiv 10 \pmod{12} \). Then it is necessary that \(\lambda \equiv 0 \pmod{2} \). Under these conditions, there is a cyclic \(DTS_\lambda(v) \) and this \(DTS_\lambda(v) \) is also reverse by the argument of Case 2.

Case 7a. Suppose that \(v = 18 \). Consider the blocks:

\[
[a_i, a_{5+i}, a_{6+i}] \text{ and } [a_i, a_{6+i}, a_{3+i}] \text{ for } i = 0, 1, 2, 3, 4, 5, \text{ along with }
\]

\[
[a_i, a_{7+i}, a_{8+i}], [a_i, b_i, b_{1+i}], [a_i, b_{1+i}, b_{3+i}], [a_i, b_{2+i}, b_{6+i}], [a_i, b_{3+i}, b_{8+i}],
[a_i, b_{5+i}, b_{4+i}], [a_i, b_{8+i}, b_{6+i}], [a_i, b_{4+i}, b_{4+i}], [a_i, b_{5+i}, b_{7+i}], \text{ and }
[a_i, b_{2+i}, b_{7+i}] \text{ for } i = 0, 1, \ldots, 8.
\]

These blocks form a collection of base blocks for a reverse \(DTS_2(18) \). Therefore there exists a reverse \(DTS_\lambda(18) \) for all \(\lambda \equiv 0 \pmod{2} \).

Case 7b. Suppose that \(v \equiv 18 \pmod{24} \), \(v \neq 18 \), say \(v = 24t + 18 \), \(t \geq 1 \). Consider the blocks:

\[
[a_i, a_{6t+3+j+i}, a_{6t+5+j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, t - 1,
\]

\[
[a_i, a_{6t+3+j+i}, a_{7t+7+j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, t - 2
\text{ (omit if } t = 1),
\]

\[
[a_i, a_{10t+6-j+i}, a_{10t+9+j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, 2t - 1,
\]

\[
[a_i, a_{7t+5+i}, a_{7t+6+i}] \text{ for } i = 0, 1, \ldots, 12t + 8,
\]

\[
[a_i, a_{6t+4+i}, a_{10t+8+i}] \text{ for } i = 0, 1, \ldots, 12t + 8,
\]

\[
[a_i, a_{4t+3+i}, a_{8t+6+i}] \text{ and } [a_i, a_{8t+6+i}, a_{4t+3+i}] \text{ for } i = 0, 1, \ldots, 8t + 5,
\]

\[
[a_i, b_{10t+8+j+i}, a_{8t+8+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, 4t + 1,
\]

\[
[a_i, b_{2t+2+j+i}, a_{4t+4+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, 2t,
\]

\[
[a_i, b_{4t+3+j+i}, a_{8t+7+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, 2t,
\]

\[
[a_i, b_{8t+5+j+i}, a_{2t+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, 2t,
\]

\[
[a_i, b_{6t+7+j+i}, a_{4t+5+2j+i}] \text{ for } i = 0, 1, \ldots, 12t + 8 \text{ and } j = 0, 1, \ldots, 2t,
\]

\[
[a_i, b_{10t+8+i}, b_{2t+1+i}] \text{ for } i = 0, 1, \ldots, 12t + 8,
\]

\[
[a_i, b_{8t+1+i}, b_{6t+4+i}] \text{ for } i = 0, 1, \ldots, 12t + 8, \text{ and }
\]

\[
[a_i, b_{4t+3+i}, b_{6t+5+i}] \text{ for } i = 0, 1, \ldots, 12t + 8.
\]

These blocks form a collection of base blocks for a reverse \(DTS_2(v) \). Therefore there exists a reverse \(DTS_\lambda(v) \) for all \(\lambda \equiv 0 \pmod{2} \). \(\square \)

Theorem 3.1 gives a complete classification of reverse directed triple systems.

185
References

