Cyclic and Rotational Decompositions of K_n into Stars

Robert B. Gardner

Institute of Mathematical and Physical Sciences
East Tennessee State University
Johnson City, Tennessee 37614 – 0296

Abstract. We give necessary and sufficient conditions for the existence of a decomposition of the complete graph into stars which admits either a cyclic or a rotational automorphism.

1 Introduction

We denote the complete graph on n vertices by K_n and the star with m edges by S_m. Let $m_1 \geq m_2 \geq \ldots \geq m_l$ be nonnegative integers. Then a $S_{m_1}, S_{m_2}, \ldots, S_{m_l}$ decomposition of K_n (or a star decomposition of K_n, for short) is a collection of stars such that

$$E(S_{m_i}) \cap E(S_{m_j}) = \emptyset \text{ if } i \neq j, \text{ and } \bigcup_{i=1}^{l} E(S_{m_i}) = E(K_n).$$

It was recently shown in [2] that such a decomposition exists if and only if

$$\sum_{i=1}^{k} m_i \leq \sum_{i=1}^{k} (n - i) \text{ for } k = 1, 2, \ldots, n - 1, \text{ and } \sum_{i=1}^{l} m_i = \binom{n}{2}.$$

An automorphism of a star decomposition is a permutation of $V(K_n)$ which fixes the set $\{S_{m_1}, S_{m_2}, \ldots, S_{m_l}\}$. The orbit of a star under an automorphism π is the collection of images of the star under the powers of π. A permutation of $V(K_n)$ which consists of a single cycle of length n is said to be cyclic. A permutation of $V(K_n)$ consisting of a fixed point and a cycle of length $n - 1$ is said to be rotational. Several graph and digraph decompositions have been studied which admit either a cyclic or rotational automorphism. See, for example, [1, 3, 4, 5]. The purpose of this paper is to give necessary and sufficient conditions for the existence of star decompositions of K_n which admit either a cyclic automorphism or a rotational automorphism.

2 Cyclic Star Decompositions of K_n

Throughout this section, we assume the vertex set of K_n is $\{0, 1, \ldots, n-1\}$ and we will construct star decompositions of K_n admitting $\pi = (0, 1, \ldots, n-1)$
Lemma 2.1 If there exists a $S_{m_1}, S_{m_2}, \ldots, S_{m_k}$-decomposition of K_n which admits a cyclic automorphism and if n is even, then $|\{i \mid m_i = 1\}| \equiv n/2 \pmod{n}$.

Proof. The edge $(0,n/2)$ must lie in some star, say S_{m_s}. Then $\pi^{n/2}((0,n/2)) = (0,n/2)$ and since each edge occurs in exactly one star of the decomposition, it must be that $\pi^{n/2}(S_{m_s}) = S_{m_s}$. Therefore $m_s = 1$. Let $A = \{\pi^i(S_{m_i}) \mid i \in \mathbb{Z}\}$. Then $|A| = n/2$ and if $S_{m_t} \notin A$ then the length of the orbit of S_{m_t} is n. Therefore $|\{i \mid m_i = 1\}| \equiv n/2 \pmod{n}$.

As argued in Lemma 2.1, the length of the orbit of every star in a cyclic star decomposition of K_n is n except for the special "short orbit" stars in set A. We therefore have:

Lemma 2.2 If there exists a $S_{m_1}, S_{m_2}, \ldots, S_{m_k}$-decomposition of K_n which admits a cyclic automorphism, then for $k = 1, 2, \ldots, n-1$, $|\{i \mid m_i = k\}| \equiv 0 \pmod{n}$, except for the case $k = 1$ when n is even.

We show the necessary conditions of Lemmas 2.1 and 2.2, along with the necessary conditions for the existence of a star decomposition of K_n, are sufficient for the existence of a cyclic star decomposition of K_n.

Theorem 2.1 Let $m_1 \geq m_2 \geq \cdots \geq m_k$ be nonnegative integers. Then there is a cyclic $S_{m_1}, S_{m_2}, \ldots, S_{m_k}$-decomposition of K_n if and only if

$$\sum_{i=1}^{k} m_i \leq \sum_{i=1}^{k} (n-i) \text{ for } k = 1, 2, \ldots, n-1, \quad \sum_{i=1}^{l} m_i = \binom{n}{2}$$

and

(a) $|\{i \mid m_i = k\}| \equiv 0 \pmod{n}$ for all $k = 1, 2, \ldots, n-1$ if n is odd, or
(b) $|\{i \mid m_1 = 1\}| \equiv n/2 \pmod{n}$ and $|\{i \mid m_i = k\}| \equiv 0 \pmod{n}$ for all $k = 2, 3, \ldots, n-1$ if n is even.

Proof. We need only establish sufficiency. Without loss of generality, we may assume $m_i \geq 1$. If n is odd, consider the collection of stars with edge sets

$$E(S_{m_1-kn-1}) = \{(i, i + r + \sum_{j=1}^{k} m_{l-(j-1)n}) \mid r = 1, 2, \ldots, m_{l-1} \}$$

314
for \(i = 0, 1, \ldots, n - 1 \) and \(k = 0, 1, \ldots, \lfloor l/n \rfloor - 1 \). If \(n \) is even, consider the collection of stars with edge sets

\[
E(S_{m_i}) = \{(i, i + n/2)\}
\]

for \(i = 0, 1, \ldots, n/2 - 1 \), and

\[
E(S_{m_{i-n/2-1}}) = \{(i, i+r+\sum_{j=1}^{k} m_{i-n/2-(j-1)n}) \mid r = 1, 2, \ldots, m_{i-n/2-1-kn}\}
\]

for \(i = 0, 1, \ldots, n - 1 \) and \(k = 0, 1, \ldots, (l - n/2)/n - 1 \). In each case, the given collection of stars forms a cyclic star decomposition of \(K_n \).

3 Rotational Star Decompositions of \(K_n \)

Throughout this section, we assume the vertex set of \(K_n \) is \(\{\infty, 0, 1, \ldots, n-2\} \) and we will construct star decompositions of \(K_n \) admitting \(\pi = (\infty) \) \((0,1,\ldots,n-2)\) as an automorphism.

As in Lemma 2.1, if \(n - 1 \) is even, then the edge \((0, (n - 1)/2)\) must occur in some \(S_{m_s} \) where \(m_s = 1 \). We analogously have:

Lemma 3.1 If there exists a \(S_{m_1}, S_{m_2}, \ldots, S_{m_i} \)-decomposition of \(K_n \) which admits a rotational automorphism and if \(n \) is odd, then \(|\{i \mid m_i = 1\}| \equiv (n - 1)/2 \pmod{n - 1} \).

The orbit of each star of a rotational star decomposition of \(K_n \) is of length \(n - 1 \), with two possible types of exceptions: (1) if \(n \) is odd, then the stars \(S_1 \) with edge sets \(\{(i, i + (n - 1)/2)\} \) for some \(i \) have orbits of length \((n - 1)/2 \), and (2) if \(m \mid (n - 1) \), \(m \neq 1 \), say \((n - 1)/m = p \) then the stars \(S_m \) with edge sets \(\{(\infty, i), (\infty, i+p), \ldots, (\infty, i+n-1-p)\} \) for some \(i \) have orbits of length \(p \).

Theorem 3.2 Let \(m_1 \geq m_2 \geq \cdots \geq m_l \) be nonnegative integers. Then there is a rotational \(S_{m_1}, S_{m_2}, \ldots, S_{m_l} \)-decomposition of \(K_n \) if and only if

\[
\sum_{i=1}^{k} m_i \leq \sum_{i=1}^{k} (n-i) \text{ for } k = 1, 2, \ldots, n-1, \quad \sum_{i=1}^{l} m_i = \binom{n}{2}
\]

and

(a) \(|\{i \mid m_i = k\}| \equiv 0 \pmod{n - 1} \) for all \(k = 1, 2, \ldots, n - 1 \) if \(n \) is even,
(b) \(|\{i \mid m_i = 1\}| \equiv (n-1)/2 \ (\text{mod} \ n-1)\) and \(|\{i \mid m_i = k\}| \equiv 0 \ (\text{mod} \ n-1)\) for all \(k = 2, 3, \ldots, n-1\) if \(n\) is odd, or

(c) if \(m \mid (n-1)\), say \((n-1)/m = p\), for some \(m \in \{m_1, m_2, \ldots, m_l\}\), \(m \neq 1\), then \(|\{i \mid m_i = m\}| \equiv p \ (\text{mod} \ n-1)\) and \(|\{i \mid m_i = k\}| \equiv 0 \ (\text{mod} \ n-1)\) for all \(k = 1, 2, \ldots, m-1, m+1, \ldots, n-1\) if \(n\) is even, or

(d) if \(m \mid (n-1)\), say \((n-1)/m = p\), for some \(m \in \{m_1, m_2, \ldots, m_l\}\), \(m \neq 1\), then \(|\{i \mid m_i = m\}| \equiv p \ (\text{mod} \ n-1)\), \(|\{i \mid m_i = 1\}| \equiv (n-1)/2 \ (\text{mod} \ n-1)\) and \(|\{i \mid m_i = k\}| \equiv 0 \ (\text{mod} \ n-1)\) for all \(k = 2, 3, \ldots, m-1, m+1, \ldots, n-1\) if \(n\) is odd.

Proof. We need only establish sufficiency. Without Loss of generality, we may assume \(m_i \geq 1\). We consider the four cases separately.

(a) Consider the collection of stars with edge sets

\[E(S_{m_{i-1}}) = \{(\infty, i)\} \bigcup \{(i, i+r) \mid r = 1, 2, \ldots, m_i - 1\} \]

for \(i = 0, 1, \ldots, n-2\) and

\[E(S_{m_{i-k(n-1)-1}}) = \{(i, i+r - 1 + \sum_{j=1}^{k} m_{i-(j-1)(n-1)}) \mid r = 1, 2, \ldots, m_i - k(n-1)\} \]

for \(i = 0, 1, \ldots, n-2\) and \(k = 1, 2, \ldots, l/(n-1) - 1\).

(b) Consider the collection of stars with edge sets

\[E(S_{m_{i-1}}) = \{(i, i + (n-1)/2)\} \]

for \(i = 0, 1, \ldots, (n-1)/2 - 1\),

\[E(S_{m_{i-(n-1)/2-i}}) = \{(\infty, i)\} \bigcup \{(i, i+r) \mid r = 1, 2, \ldots, m_{i-(n-1)/2-k(n-1)-1}\} \]

for \(i = 0, 1, \ldots, n-2\), and

\[E(S_{m_{i-(n-1)/2-k(n-1)-i}}) = \{(i, i+r - 1 + \sum_{j=1}^{k} m_{i-(n-1)/2-(j-1)(n-1)}) \mid r = 1, 2, \ldots, m_{l-(n-1)/2-k(n-1)}\} \]

for \(i = 0, 1, \ldots, n-2\) and \(k = 1, 2, \ldots, (l - (n-1)/2)/(n-1) - 1\).
(c) Let t be the largest index such that $m_t = m$. Consider the collection of stars with edge sets

$$E(S_{m_t-k(n-1)-i}) = \{(i, i + r + \sum_{j=1}^{k} m_{t-(j-1)(n-1)}) \mid r = 1, 2, \ldots, m_{t-k(n-1)} \}$$

for $i = 0, 1, \ldots, n - 2$ and $k = 0, 1, \ldots, (l - t)/(n - 1) - 1$,

$$E(S_{m_{t-i}}) = \{(\infty, i + rp) \mid r = 0, 1, \ldots, m_t - 1 \}$$

for $i = 0, 1, \ldots, p - 1$,

$$E(S_{m_{t-p-k(n-1)-i}}) = \{(i, i + r + \sum_{j=1}^{(l-t)/(n-1)} m_{t-(j-1)(n-1)} + \sum_{j=1}^{k} m_{t-p-(j-1)(n-1)}) \mid r = 1, 2, \ldots, m_{t-p-k(n-1)} \}$$

for $i = 0, 1, \ldots, n - 2$ and $k = 0, 1, \ldots, (t - p)/(n - 1) - 1$.

(d) Let t be the largest index such that $m_t = m$. Consider the collection of stars with edge sets

$$E(S_{m_{t-i}}) = \{(i, i + (n - 1)/2) \}$$

for $i = 0, 1, \ldots, (n - 1)/2 - 1$,

$$E(S_{m_{t-(n-1)/2-k(n-1)-i}}) = \{(i, i + r + \sum_{j=1}^{k} m_{t-(n-1)/2-(j-1)(n-1)}) \mid r = 1, 2, \ldots, m_{t-(n-1)/2-k(n-1)} \}$$

for $i = 0, 1, \ldots, n - 2$ and $k = 0, 1, \ldots, (l - t)/(n - 1) - 1$,

$$E(S_{m_{t-i}}) = \{(\infty, i + rp) \mid r = 0, 1, \ldots, m_t - 1 \}$$

for $i = 0, 1, \ldots, p - 1$,

$$E(S_{m_{t-p-(n-1)/2-k(n-1)-i}}) = \{(i, i + r + \sum_{j=1}^{(l-t)/(n-1)} m_{t-(n-1)/2-(j-1)(n-1)} + \sum_{j=1}^{k} m_{t-p-(n-1)/2-(j-1)(n-1)}) \mid r = 1, 2, \ldots, m_{t-p-(n-1)/2-k(n-1)} \}$$

for $i = 0, 1, \ldots, n - 2$ and $k = 0, 1, \ldots, (t - p - (n - 1)/2)/(n - 1) - 1$.

In each case, the given stars form a rotational decomposition of K_n.

317
References

