Packing the Complete Bipartite Graph with Hexagons

LaKeisha Brown¹, Gary Coker², Robert Gardner¹, and Janie Kennedy³

¹Department of Mathematics East Tennessee State University Johnson City, Tennessee 37614 – 0663

²Francis Marion University P.O. Box 100547 Florence, South Carolina 29501

³Samford University 800 Lakeshore Drive Birmingham, Alabama 35229

Dedicated to Jimmy Nanney of Auburn University in Montgomery on the event of his retirement (May 2005).

Abstract. Let $K_{m,n}$ denote the complete bipartite graph on m+n vertices with partite sets of cardinalities m and n. We give necessary and sufficient conditions for the existence of a 6-cycle packing of $K_{m,n}$.

1. Introduction

A decomposition of a simple graph G into isomorphic copies of a graph g is a set $\{g_1, g_2, \ldots, g_n\}$ where $g_i \cong g$ and $V(g_i) \subset V(G)$ for all i,

$$E(g_i) \bigcap E(g_j) = \emptyset$$
 for $i \neq j$, and $\bigcup_{i=1}^n E(g_i) = E(G)$, where $V(G)$ is the

vertex set of graph G and E(G) is the edge set of graph G. We will refer to such a decomposition as a "g decomposition of G." In the event that a g decomposition of G does not exist, we can ask the question "How close can we get to a g decomposition of G?"

A maximal packing of a simple graph G with isomorphic copies of a graph g is a set $\{g_1, g_2, \ldots, g_n\}$ where $g_i \cong g$ and $V(g_i) \subset V(G)$ for all i,

$$E(g_i) \cap E(g_j) = \emptyset$$
 for $i \neq j$, $\bigcup_{i=1}^n g_i \subset G$, and $|E(G) \setminus \bigcup_{i=1}^n E(g_i)|$ is minimal.

The set of edges for the *leave*, L, of the packing is $E(L) = E(G) \setminus \bigcup_{i=1}^{n} E(g_i)$. Packings of complete graphs have been studied, for example, for the graph g a 3-cycle [4], a 4-cycle [5], K_4 [1], and a 6-cycle [2, 3].

Let $K_{m,n}$ denote the complete graph on m+n vertices with partite sets of cardinalities m and n. Throughout this paper, unless noted otherwise, we denote the partite sets as V_m and V_n , where $V_m = \{1_1, 2_1, \ldots, m_1\}$ and $V_n = \{1_2, 2_2, \ldots, n_2\}$. We denote the 6-cycle, C_6 or "hexagon," with

edge set $\{(a,b),(b,c),(c,d),(d,e),(e,f),(f,a)\}$ as [a,b,c,d,e,f] (and analogously for other length cycles). The purpose of this paper is to give necessary and sufficient conditions for a maximal packing of $K_{m,n}$ with hexagons.

Conditions for a hexagon decomposition of $K_{m,n}$ were given by Sotteau [6]:

Theorem 1.1 The complete bipartite graph $K_{m,n}$ can be decomposed into hexagons if and only if $m \equiv 0 \pmod{6}$ and $n \equiv 0 \pmod{2}$, $n \geq 4$.

2. The Packing Results

We now consider hexagon packings of $K_{m,n}$.

Lemma 2.1 A hexagon decomposition of $K_{n,n} \setminus M$, where M is a perfect matching of $K_{n,n}$, exists if and only if $n \equiv 1$ or $3 \pmod 6$.

Proof. First we need $|E(K_{n,n} \setminus M)| = n^2 - n \equiv 0 \pmod{6}$, so $n \equiv 0$ or 1 (mod 3) is necessary. Since each vertex of a hexagon is of even degree and each vertex of $K_{n,n} \setminus M$ has degree n-1, we need n odd. Therefore $n \equiv 1$ or 3 (mod 6) is necessary. In this lemma, we assume the vertex set of $K_{n,n}$ has partite sets $\{0_1, 1_1, \ldots, (n-1)_1\}$ and $\{0_2, 1_2, \ldots, (n-1)_2\}$.

We now consider cases. In each case, the vertex labels are reduced modulo n and the collection of hexagons form a decomposition of $K_{n,n}$.

Case 1. Suppose $n \equiv 1 \pmod{12}$, say n = 12k+1. Consider the hexagons: $\{[i_1, (12j+i)_2, (12k+i)_1, (12j+1+i)_2, (12k-1+i)_1, (12j+4+i)_2], [i_1, (12j+5+i)_2, (12k-1+i)_1, (12j+7+i)_2, (12k+i)_1, (12j+10+i)_2] \mid i = 0, 1, \ldots, 12k; j = 0, 1, \ldots, k-1\}$. In this case, $E(M) = \{(i_1, (12k+i)_2) \mid i = 0, 1, \ldots, 12k\}$.

Case 2. Suppose $n \equiv 7 \pmod{12}$, say n = 12k+7. Consider the hexagons: $\{[i_1, (12j+i)_2, (12k+6+i)_1, (12j+1+i)_2, (12k+5+i)_1, (12j+4+i)_2\}, [i_1, (12j+5+i)_2, (12k+5+i)_1, (12j+7+i)_2, (12k+6+i)_1, (12j+10+i)_2] \mid i = 0, 1, \dots, 12k+6; j = 0, 1, \dots, k-1\} \cup \{[i_1, (12k+i)_2, (12k+6+i)_1, (12k+1+i)_2, (12k+5+i)_1, (12k+4+i)_2] \mid i = 0, 1, \dots, 12k+6\}.$ In this case, $E(M) = \{(i_1, (12k+5+i)_2) \mid i = 0, 1, \dots, 12k+6\}.$

Case 3. Suppose $n \equiv 3 \pmod{36}$, say n = 36k + 3. Consider the hexagons: $\{[i_1, (12j+i)_2, (36k+2+i)_1, (12j+1+i)_2, (36k+1+i)_1, (12j+4+i)_2], [i_1, (12j+5+i)_2, (36k+1+i)_1, (12j+7+i)_2, (36k+2+i)_1, (12j+10+i)_2]\}$ $i = 0, 1, \ldots, 36k + 2; j = 0, 1, \ldots, k-1\} \cup \{[i_1, (12j+12k+7+i)_2, (36k+2+i)_1, (12j+12k+8+i)_2, (36k+1+i)_1, (12j+12k+11+i)_2], [i_1, (12j+12k+12+i)_2, (36k+1+i)_1, (12j+12k+14+i)_2, (36k+2+i)_1, (12j+12k+17+i)_2]\}$ $i = 0, 1, \ldots, 36k + 2; j = 0, 1, \ldots, k-2\} \cup \{[i_1, (12j+24k+14+i)_2, (36k+2+i)_1, (12j+24k+14+i)_2, (36k+2+i)_1, (12j+24k+14+i)_2, (36k+2+i)_1, (12j+24k+15+i)_2, (36k+1+i)_1, (12j+24k+18+i)_2], [i_1, (12j+24k+14+i)_2]\}$

 $i = 0, 1, \dots, 36k+2; j = 0, 1, \dots, k-2 \cup \{[i_1, (12k+i)_2, (36k+1+i)_1, (12k+i)_2, (36k+1+i)_1, (12k+i)_2, (36k+1+i)_1, (12k+i)_2, (36k+1+i)_1, (12k+i)_2, (36k+1+i)_2, (36k+1$ $(2+i)_2, (36k+2+i)_1, (12k+5+i)_2], [i_1, (24k-5+i)_2, (36k+2+i)_1, (24k-5+i)_2], (36k+2+i)_1, (36k+2+i)_2, (36k+2+i)_1, (36k+2+i)_2, (36k+2+i)_2,$ $(4+i)_2$, $(36k+1+i)_1$, $(24k-1+i)_2$, $[i_1, (24k+i)_2, (36k+i)_1, (24k+2+i)_2]$ $[i]_2, (36k+1+i)_1, (24k+6+i)_2, [i_1, (24k+7+i)_2, (36k+1+i)_1, (24k+7+i)_2, (36k+1+i)_1, (24k+6+i)_2]$ $(9+i)_2, (36k+2+i)_1, (24k+12+i)_2] \mid i=0,1,\ldots,36k+2\} \cup \{[i_1,(12k+12+i)_2] \mid i=0,1,\ldots,36k+2\}$ $(1+i)_2, (24k+2+i)_1, i_2, (12k+1+i)_1, (24k+2+i)_2] \mid i=0,1,\ldots,12k\}.$ In this case, $E(M) = \{(i_1, (36k+2+i)_2) \mid i=0,1,\ldots,36k+2\}.$ Case 4. Suppose $n \equiv 9 \pmod{36}$, say n = 36k + 9. Consider the hexagons: $\{[i_1,(12j+i)_2,(36k+8+i)_1,(12j+1+i)_2,(36k+7+i)_1,(12j+4+i)_2,(36k+7+i)_1,(12j+4+i)_2,(36k+7+i)_2,$ $[i)_2], [i_1, (12j+5+i)_2, (36k+7+i)_1, (12j+7+i)_2, (36k+8+i)_1, (12j+10+i)_2]$ $i = 0, 1, \dots, 36k + 8; j = 0, 1, \dots, k - 1 \cup \{[i_1, (12j + 12k + 7 + i)_2, (36k + 8 + 1)\}\}$ $(i)_1, (12j+12k+8+i)_2, (36k+7+i)_1, (12j+12k+11+i)_2], [i_1, (12j+12$ $12+i)_2, (36k+7+i)_1, (12j+12k+14+i)_2, (36k+8+i)_1, (12j+12k+17+i)_2$ $i = 0, 1, \dots, 36k + 8; j = 0, 1, \dots, k - 2\} \cup \{[i_1, (12j + 24k + 14 + i)_2, (36k + 8 + 14 + i)_3, (36k + 8 + 14 + i)_4, (36k + i)_4,$ $(i)_1, (12j+24k+15+i)_2, (36k+7+i)_1, (12j+24k+18+i)_2, [i_1, (12j+24k+18+i)_2], [i_1, (12j+24$ $19+i)_2, (36k+7+i)_1, (12j+24k+21+i)_2, (36k+8+i)_1, (12j+24k+24+i)_2]$ $i = 0, 1, \dots, 36k + 8; j = 0, 1, \dots, k-2 \cup \{[i_1, (12k+i)_2, (36k+8+i)_1, (36k+8+i)_2, (36k+4+i)_2, (36k+4+i)_2$ $(3+i)_2, (1+i)_1, (12k+6+i)_2, [i_1, (24k-5+i)_2, (36k+8+i)_1, (24k-4+i)_2, (36k+8+i)_1, (24k-4+i)_2, (36k+8+i)_2, (36k+4+i)_2, (36k+$ $i)_2, (36k+7+i)_1, (24k-1+i)_2], [i_1, (24k+i)_2, (36k+7+i)_1, (24k+1+i)_2], (36k+7+i)_1, (24k+1+i)_2], (36k+7+i)_1, (24k+1+i)_2], (36k+7+i)_1, (24k+1)_2, (36k+7+i)_1, (24k+1)_2, (36k+7+i)_1, (24k+1+i)_2, (36k+7+i)_1, (24k+1+i)_2, (36k+7+i)_1, (24k+1+i)_2, (36k+7+i)_1, (24k+1+i)_2, (36k+7+i)_1, (24k+1+i)_2, (36k+7+i)_2, (36k+7+i)_1, (24k+1+i)_2, (36k+7+i)_2, (36k+7$ $[i]_2, (36k+6+i)_1, (24k+5+i)_2], [i_1, (24k+7+i)_2, (36k+7+i)_1, (24k+9+i)_2], [i_1, (24k+7+i)_2, (36k+7+i)_3], [i_1, (24k+7+i)_2, (36k+7+i)_3], [i_1, (24k+7+i)_3, (24k+7+i)_3], [i_1, (24k+7+i)_3, (24k+7+i)_4], [i_1, ($ $[i)_2, (36k+8+i)_1, (24k+12+i)_2], [i_1, (36k+2+i)_2, (36k+8+i)_1, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+8+i)_1, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+8+i)_1, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+8+i)_1, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+12+i)_2, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+12+i)_2, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+12+i)_2, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+12+i)_2, (36k+12+i)_2, (36k+12+i)_2], [i_1, (36k+12+i)_2, (36k+12+i$ $3+i)_2$, $(36k+7+i)_1$, $(36k+6+i)_2$ | $i=0,1,\ldots,36k+8$ } $\cup \{[i_1,(12k+3+i)_2,(36k+7+i)_3,(36k+6+i)_2,(36k+7+i)_3,(36k+6+i)_2\}$ $i)_2, (24k+6+i)_1, i_2, (12k+3+i)_1, (24k+6+i)_2] \mid i=0,1,\ldots,12k+2\}.$ In this case, $E(M) = \{(i_1, (36k+7+i)_2) \mid i=0,1,\ldots,36k+8\}.$ Case 5. Suppose $n \equiv 15 \pmod{36}$, say n = 36k + 15. Consider the hexagons: $\{[i_1, (12j+i)_2, (36k+14+i)_1, (12j+1+i)_2, (36k+13+i)_1, (12j+1+i)_2, (36k+13+i)_2, (36k+13+i)_$ $[4+i)_2], [i_1, (12j+5+i)_2, (36k+13+i)_1, (12j+7+i)_2, (36k+14+i)_1, (12j+7+i)_2]$ $\{(10+i)_2\} \mid i=0,1,\ldots,36k+14; j=0,1,\ldots,k-1\} \cup \{(i_1,(12j+12k+7+12k$ $(i)_2, (36k+14+i)_1, (12j+12k+8+i)_2, (36k+13+i)_1, (12j+12k+11+i)_2, (36k+13+i)_3, (36k+13+i)_4, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5, (36k+13+i)_5,$ $[i)_{2}],[i_{1},(12j+12k+12+i)_{2},(36k+13+i)_{1},(12j+12k+14+i)_{2},(36k+13+i)_{1},(12j+12k+14+i)_{2},(36k+13+i)_{1},(12j+12k+14+i)_{2},(36k+13+i)_{1},(12j+12k+14+i)_{2},(36k+13+i)_{1},(36k+13+i)_{2$ $(14+i)_1, (12j+12k+17+i)_2$ | $i=0,1,\ldots,36k+14; j=0,1,\ldots,k-1$ \cup $\{[i_1,(12j+24k+14+i)_2,(36k+14+i)_1,(12j+24k+15+i)_2,(36k+13+i)_2,(36k+13+i)_2,(36k+13+i)_2,(36k+13+i)_2,(36k+14+i)_2,(3$ $i)_1, (12j+24k+18+i)_2], [i_1, (12j+24k+19+i)_2, (36k+13+i)_1, (12j+24k+19+i)_2, (36k+13+i)_1, (12j+24k+19+i)_2, (36k+13+i)_2], [i_1, (12j+24k+19+i)_2, (36k+13+i)_2, (3$ $(21+i)_2, (36k+14+i)_1, (12j+24k+24+i)_2 \mid i=0,1,\ldots,36k+14; j=0,1,\ldots,36k+14$ $\{0,1,\ldots,k-1\}\cup\{[i_1,(12k+i)_2,(36k+14+i)_1,(12k+1+i)_2,(36k+13+i)_2\}$ $[i]_1, (12k+4+i)_2], [i]_1, (24k+7+i)_2, (36k+14+i)_1, (24k+10+i)_2, (1+i)_2, (1+i$ $[i]_1, (24k+13+i)_2] \mid i=0,1,\ldots,36k+14\} \cup \{[i_1, (12k+5+i)_2, (24k+10+1)_2, (24k+10+1$ $(i)_1, (i_2, (12k+5+i)_1, (24k+10+i)_2) \mid i = 0, 1, \dots, 12k+4$. In this case, $E(M) = \{(i_1, (36k+14+i)_2) \mid i = 0, 1, \dots, 36k+14\}.$ Case 6. Suppose $n \equiv 21 \pmod{36}$, say n = 36k + 21. Consider the hexagons: $\{[i_1,(12j+i)_2,(36k+20+i)_1,(12j+1+i)_2,(36k+19+i)_1,(12j+1)_2,(36k+19+i)_2,(36k+19$ $[4+i)_2], [i_1, (12j+5+i)_2, (36k+19+i)_1, (12j+7+i)_2, (36k+20+i)_1, (12j+7+i)_2], (36k+20+i)_1, (12j+7+i)_2, (36k+20+i)_2, (36k+20+$

 $(i)_2, (36k+20+i)_1, (12j+12k+20+i)_2, (36k+19+i)_1, (12j+12k+23+i)_2, (36k+20+i)_3, (36k+20+i)_4, (36k+20+i)_4,$ $[i]_{2}, [i]_{1}, (12j+12k+24+i)_{2}, (36k+19+i)_{1}, (12j+12k+26+i)_{2}, (36k+19+i)_{1}, (12j+12k+26+i)_{2}, (36k+19+i)_{1}, (12j+12k+26+i)_{2}, (36k+19+i)_{1}, (12j+12k+26+i)_{2}, (36k+19+i)_{1}, (12j+12k+26+i)_{2}, (36k+19+i)_{1}, (36k+19+i)_{1}, (36k+19+i)_{1}, (36k+19+i)_{2}, (36k+19+i)_{1}, (36k+19+i)_{2}, (3$ $20+i)_1, (12j+12k+29+i)_2] \mid i=0,1,\ldots,36k+20; j=0,1,\ldots,k-2\} \cup (12j+12k+29+i)_2$ $\{[i_1,(12j+24k+26+i)_2,(36k+20+i)_1,(12j+24k+27+i)_2,(36k+19+i)_2,(36k+20+i)_2,(3$ $i)_1, (12j+24k+30+i)_2], [i_1, (12j+24k+31+i)_2, (36k+19+i)_1, (12j+24k+31+i)_2, (36k+19+i)_3], [i_1, (12j+24k+31+i)_2, (36k+19+i)_3], [i_1, (12j+24k+31+i)_3, (36k+19+i)_3], [i_1, (12j+24k+31+i)_3], [i_1, (12j+24k+i)_4], [i_1, (12j+24k+i)_4],$ $33+i)_2$, $(36k+20+i)_1$, $(12j+24k+36+i)_2$ | $i=0,1,\ldots,36k+20$; $j=0,1,\ldots,36k+30$ $0, 1, \ldots, k-2$ \cup { $[i_1, (12k+i)_2, (36k+20+i)_1, (12k+1+i)_2, (36k+19+i)_1, (12k+1+i)_2, (36k+10+i)_2, (36k+10$ $[i]_1, (12k+4+i)_2, [i]_1, (12k+5+i)_2, (36k+18+i)_1, (12k+7+i)_2, (36k+19+i)_3, (36k+18+i)_4, (36$ $[i]_1, (12k+11+i)_2, [i]_1, (12k+12+i)_2, (36k+19+i)_1, (12k+14+i)_2, (36k+19+i)_3, (36k+19+i)_4, (36k+19+i)_5, (36k+19+i)_6, (36k+19+i)_6,$ $20+i)_1, (12k+17+i)_2], [i_1, (24k+7+i)_2, (36k+20+i)_1, (24k+8+i)_2, (36k+20+i)_1, (36k+20+i)_2, (36k+20+i)_$ $19+i)_1, (24k+11+i)_2, [i_1, (24k+12+i)_2, (36k+18+i)_1, (24k+14+i)_2, (36k+18+i)_3, (24k+14+i)_4, (24k+i)_4, ($ $i)_2$, $(36k+19+i)_1$, $(24k+18+i)_2$], $[i_1, (24k+19+i)_2, (36k+19+i)_1, (24k+19+i)_2]$ $21+i)_2$, $(36k+20+i)_1$, $(24k+24+i)_2$, $[i_1, (36k+14+i)_2, (36k+20+i)_1, (36k+14+i)_2]$ $|15+i\rangle_2, (36k+19+i)_1, (36k+18+i)_2| |i=0,1,\ldots,36k+20\} \cup \{[i_1,(12k+18+i)_2,(36k+19+i)_2,(36k+18+i)_2,(36k+18+i)_2,(36k+18+i)_2,(36k+18+i)_2,(36k+18+i)_2\} |i=0,1,\ldots,36k+20\} \cup \{[i_1,(12k+18+i)_2,(36k+$ $7+i)_2$, $(24k+14+i)_1$, i_2 , $(12k+7+i)_1$, $(24k+14+i)_2$] | $i=0,1,\ldots,12k+6$ }. In this case, $E(M) = \{(i_1, (36k+19+i)_2) \mid i = 0, 1, ..., 36k+20\}.$ Case 7. Suppose $n \equiv 27 \pmod{36}$, say n = 36k + 27. Consider the hexagons: $\{[i_1, (12j+i)_2, (36k+26+i)_1, (12j+1+i)_2, (36k+25+i)_1, (12j+1+i)_2, (36k+25+i)_1, (12j+1+i)_2, (36k+26+i)_1, (36k+26+i)_1, (36k+26+i)_2, (36k+26+i)_1, (36k+26+i)_2, (36k+26+i)_2,$ $[4+i)_2], [i_1, (12j+5+i)_2, (36k+25+i)_1, (12j+7+i)_2, (36k+26+i)_1, (12j+7+i)_2], [i_1, (12j+5+i)_2, (36k+25+i)_1, (12j+7+i)_2, (36k+26+i)_1, (36k+26+i)_2, (36$ $i)_2, (36k+26+i)_1, (12j+12k+20+i)_2, (36k+25+i)_1, (12j+12k+23+i)_2, (36k+26+i)_3, (36k+26+i)_4, (36k+26+i)_5, (36k+26+i)_5,$ $[i]_{2}, [i]_{1}, (12j+12k+24+i)_{2}, (36k+25+i)_{1}, (12j+12k+26+i)_{2}, (36k+25+i)_{1}, (12j+12k+26+i)_{2}, (36k+25+i)_{1}, (12j+12k+26+i)_{2}, (36k+25+i)_{1}, (12j+12k+26+i)_{2}, (36k+25+i)_{1}, (12j+12k+26+i)_{2}, (36k+25+i)_{1}, (36k+25+i)_{1}, (36k+25+i)_{1}, (36k+26+i)_{2}, (36k+25+i)_{1}, (36k+26+i)_{2}, (36k+25+i)_{1}, (36k+26+i)_{2}, (3$ $|26+i)_1, (12j+12k+29+i)_2| \mid i=0,1,\ldots,36k+26; j=0,1,\ldots,k-2\} \cup |26+i)_1, (12j+12k+29+i)_2| \mid i=0,1,\ldots,36k+26; j=0,1,\ldots,k-2\} \cup |26+i)_1, (12j+12k+29+i)_2| \mid i=0,1,\ldots,36k+26; j=0,1,\ldots,k-2\} \cup |26+i|_1,\ldots,26k+26; j=0,1,\ldots,k-2\} \cup |26+i|_2,\ldots,26k+26; j=0,1,\ldots,26k+26; j=$ $\{[i_1,(12j+24k+26+i)_2,(36k+26+i)_1,(12j+24k+27+i)_2,(36k+25+i)_2,(36k+26+i)_2,(3$ $i)_1$, $(12j+24k+30)_2$], $[i_1$, $(12j+24k+31+i)_2$, $(36k+25+i)_1$, $(12j+24k+31+i)_2$ $33+i)_2, (36k+26+i)_1, (12j+24k+36+i)_2] \mid i=0,1,\ldots,36k+26; j=0,1,\ldots,36k+26$ $\{0,1,\ldots,k-1\}\cup\{[i_1,(12k+i)_2,(36k+26+i)_1,(12k+1+i)_2,(36k+25+i)_1\}$ $i_{1}, (12k+4+i)_{2}, [i_{1}, (12k+5+i)_{2}, (36k+25+i)_{1}, (12k+6+i)_{2}, (36k+23+i)_{1}, (12k+4+i)_{2}, (36k+23+i)_{2}, (36k+23+i)_{2}, (36k+25+i)_{2}, ($ $(i)_1, (12k+11+i)_2, [i_1, (12k+12+i)_2, (36k+26+i)_1, (12k+15+i)_2, (1+i)_1, (12k+11+i)_2]$ $i)_1, (12k+18+i)_2], [i_1, (24k+7+i)_2, (36k+26+i)_1, (24k+8+i)_2, (36k+26+i)_1), (24k+8+i)_2], (36k+26+i)_1, (36k+26+i)_2, (36k+26+i)_1, (36k+26+i)_2, (3$ $25+i)_1, (24k+11+i)_2], [i_1, (24k+12+i)_2, (36k+25+i)_1, (24k+13+i)_2], [i_1, (24k+12+i)_2, (24k+13+i)_2], [i_1, (24k+13+i)_2, (24k+13+i)_2], [i_1, (24k+13+i)_2, (24k+13+i)_2], [i_1, (24k+13+i)_2, (24k+13+i)_2], [i_1, (24k+12+i)_2, (24k+12+i)_2], [i_1, (24k+12+i)_2], [i_1$ $i)_2, (36k + 24 + i)_1, (24k + 17 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 17 + i)_2], (36k + 24 + i)_1, (24k + 17 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 17 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 17 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 17 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (36k + 25 + i)_1, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (24k + 19 + i)_2, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (24k + 19 + i)_2, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (24k + 19 + i)_2], [i_1, (24k + 19 + i)_2, (24k + i)_2, (24$ $(i)_1, (i_2, (12k+9+i)_1, (24k+18+i)_2) \mid i = 0, 1, \dots, 12k+8$. In this case, $E(M) = \{(i_1, (36k + 26 + i)_1) \mid i = 0, 1, \dots, 36k + 26\}.$ Case 8. Suppose $n \equiv 33 \pmod{36}$, say n = 36k + 33. Consider the hexagons: $\{[i_1,(12j+i)_2,(36k+32+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(12j+1+i)_2,(36k+31+i)_1,(36k+31+i)_1,(36k+31+i)_2,(36k+31+i)_1,(36k+31+i)_2,(36k$ $[4+i)_2], [i_1, (12j+5+i)_2, (36k+31+i)_1, (12j+7+i)_2, (36k+32+i)_1, (12j+7+i)_2], [i_1, (12j+5+i)_2, (36k+31+i)_1, (12j+7+i)_2, (36k+32+i)_1, (12j+7+i)_2]$ $(i)_2, (36k+32+i)_1, (12j+24k+27+i)_2, (36k+31+i)_1, (12j+24k+30+i)_2, (36k+32+i)_3, (36k+32+i)_4, (36k+22+i)_4, (36k+22+i)_4,$ $i)_{2}],[i_{1},(12j+24k+31+i)_{2},(36k+31+i)_{1},(12j+24k+33+i)_{2},(36k+31+i)_{1},(12j+24k+33+i)_{2},(36k+31+i)_{1},(36k+31+i)_{2},(36k+31+i)_{1},(36k+31+i)_{2},(36k+31$ $(32+i)_1, (12j+24k+36+i)_2] \mid i=0,1,\ldots,36k+32; j=0,1,\ldots,k-1\} \cup (32+i)_1, (12j+24k+36+i)_2$ $\{[i_1,(12k+i)_2,(36k+32+i)_1,(12k+1+i)_2,(36k+31+i)_1,(12k+4+i)_2,(36k+31+i)_1,(12k+4+i)_2,(36k+31+i)_1,(12k+4+i)_2,(36k+31+i)_2,(36k+21+i)_2,(36k$

 $i)_2], [i_1, (12k+5+i)_2, (36k+31+i)_1, (12k+6+i)_2, (36k+30+i)_1, (12k+10+i)_2], [i_1, (12k+12+i)_2, (36k+31+i)_1, (12k+14+i)_2, (36k+32+i)_1, (12k+17+i)_2], [i_1, (36k+26+i)_2, (36k+32+i)_1, (36k+27+i)_2, (36k+31+i)_1, (36k+30+i)_2] \mid i=0,1,\ldots, 36k+32\} \cup \{[i_1, (12k+11+i)_2, (24k+22+i)_1, i_2, (12k+11+i)_1, (24k+22+i)_2] \mid i=0,1,\ldots, 12k+10\}.$ In this case, $E(M) = \{(i_1, (36k+31+i)_2) \mid i=0,1,\ldots, 36k+32\}.$

Lemma 2.2 A maximal hexagon packing of $K_{m,n}$ where m is even and n is odd $(m \ge 4, n \ge 3)$ has a leave L satisfying |E(L)| = m + k where k is the smallest nonnegative integer such that $|E(K_{m,n})| - (m+k) \equiv 0$ (mod 6).

Proof. Since each vertex of V_m is of odd degree in $K_{m,n}$, in the leave of a packing each of these vertices will be of odd degree. Therefore in a packing of $K_{m,n}$ with leave L, it is necessary that $|E(L)| \geq m$. Since $K_{m,n}$ is a union of L and a collection of hexagons, then $|E(K_{m,n})| \equiv |E(L)| \pmod{6}$. So in a maximal packing, it is necessary that |E(L)| = m + k where k is as described. We now establish sufficiency.

Case 1. Suppose $m \equiv 0 \pmod{6}$ and $n \equiv 1 \pmod{2}$. Now $K_{m,n} = K_{m,n-3} \cup \frac{m}{3} \times (K_{3,3} \setminus M) \cup \frac{m}{3} \times M$ where the partite sets of $K_{m,n-3}$ are V_m and $V_n \setminus \{1_2, 2_2, 3_2\}$, the partite sets of the *i*th $K_{3,3} \setminus M$ are $\{(3i-2)_1, (3i-1)_1, (3i)_1\}$ and $\{1_2, 2_2, 3_2\}$, and M is a perfect matching of $K_{3,3}$. Now $K_{m,n-3}$ can be decomposed into hexagons by Theorem 1.1 and each $K_{3,3} \setminus M$ can be decomposed into hexagons by Lemma 2.1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where |E(L)| = m.

Case 2. Suppose $m \equiv 0 \pmod{2}$, $m \geq 4$, and $n \equiv 1 \pmod{6}$. Now $K_{m,n} = K_{m,n-1} \cup S_m$ where the partite sets of $K_{m,n-1}$ are V_m and $V_n \setminus \{1_2\}$, and the edge set of S_m is $\{(i_1, i_2) \mid i = 1, 2, ..., m\}$. Now $K_{m,n-1}$ can be decomposed into hexagons by Theorem 1.1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where |E(L)| = m.

Case 3. Suppose $m \equiv 2 \pmod{6}$, $m \geq 4$, and $n \equiv 3 \pmod{6}$. Now $|E(K_{m,n}| - m \equiv 4 \pmod{6})$, so it is necessary that a packing have a leave L with $|E(L)| \geq m+4$. Now $K_{m,n} = K_{m,n-3} \cup (K_{m-8,3} \setminus M) \cup 2 \times C_6 \cup M \cup 12 \times K_2$ where the partite sets of $K_{m,n-3}$ are V_m and $V_n \setminus \{1_2, 2_2, 3_2\}$, the partite sets of $K_{m-8,3} \setminus M$ are $\{9_1, 10_1, \ldots, m_1\}$ and $\{1_2, 2_2, 3_2\}$, M is a collection of m-8 edges of $K_{m-8,3}$ as described in Case $1, 2 \times C_6 = \{[3_1, 2_2, 4_1, 3_2, 5_1, 1_2], [6_1, 3_2, 8_1, 2_2, 7_1, 1_2]\}$, and $12 \times K_2 = \{(1_1, 1_2), (1_1, 2_2), (1_1, 3_2), (2_1, 1_2), (2_1, 2_2), (2_1, 3_2), (3_1, 3_2), (4_1, 1_2), (5_1, 2_2), (6_1, 2_2), (7_1, 3_2), (8_1, 1_2)\}$. Now $K_{m,n-3}$ can be decomposed into hexagons by Theorem 1.1 and $K_{m-8,3} \setminus M$ can be decomposed into hexagons by Theorem 1.1 and $K_{m-8,3} \setminus M$ can be decomposed into hexagons by Case 1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| = |E(M)| + |E(12 \times K_2)| = m+4$.

Case 4. Suppose $m \equiv 2 \pmod{6}$, $m \geq 8$, and $n \equiv 5 \pmod{6}$. Now

 $|E(K_{m,n})|-m\equiv 2\pmod 6$, so it is necessary that a packing have a leave L with $|E(L)| \geq m+2$. Now $K_{m,n} = K_{m,n-5} \cup (K_{m-8,5} \setminus M) \cup K_{m,n-5} \cup (K_{m-8,5} \setminus M)$ $5 \times C_6 \cup 10 \times K_2$ where the partite sets of $K_{m,n-5}$ are V_m and $V_n \setminus$ $\{1_2, 2_2, 3_2, 4_2, 5_2\}$, the partite sets of $K_{m-8,5} \setminus M$ are $\{9_1, 10_1, \ldots, m_1\}$ and $\{1_2, 2_2, 3_2, 4_2, 5_2\}$, M is a collection of m-8 edges as described in Case 1, $5 \times$ $\{8_1, 5_2, 7_1, 4_2\}, \{8_1, 1_2, 4_1, 2_2, 1_1, 4_2\}, \text{ and } 10 \times K_2 = \{(1_1, 5_2), (2_1, 5_2), (3_1, 1_2), ($ $(4_1, 4_2), (5_1, 2_2), (5_1, 4_2), (5_1, 5_2), (6_1, 5_2), (7_1, 1_2), (8_1, 2_2)$. Now $K_{m,n-5}$ can be decomposed into hexagons by Theorem 1.1 and $K_{m-8.5} \setminus M$ can be decomposed into hexagons by Case 1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| = |E(M)| + |E(10 \times K_2)| = m + 2$. Case 5. Suppose $m \equiv 4 \pmod{6}$ and $n \equiv 3 \pmod{6}$. As in Case 4, a packing with leave L satisfies $|E(L)| \geq m+2$. Now $K_{m,n} = K_{m,n-3} \cup$ $(K_{m-4,3} \setminus M) \cup C_6 \cup M \cup 6 \times K_2$ where the partite sets of $K_{m,n-3}$ are V_m and $V_n \setminus \{1_2, 2_2, 3_2\}$, the partite sets of $K_{m-4,3} \setminus M$ are $V_m \setminus \{1_1, 2_1, 3_1, 4_1\}$ and $\{1_2, 2_2, 3_2\}$, M is a collection of m-4 edges of $K_{m-4,3}$ as described in Case 1, $C_6 = [1_1, 1_2, 2_1, 2_2, 3_1, 3_2]$, and $6 \times K_2 = \{(1_1, 2_2), (2_1, 3_2), (3_1, 1_2), (3_1, 3_2), ($ $(4_1, 1_2), (4_1, 2_2), (4_1, 3_2)$. Now $K_{m,n-3}$ can be decomposed into hexagons by Theorem 1.1 and $K_{m-4,3} \setminus M$ can be decomposed into hexagons by Case 1. Therefore a maximal packing of $K_{m,n}$ will have a leave L were $|E(L)| = |E(M)| + |E(6 \times K_2)| = m + 2.$

Case 6. Suppose $m \equiv 4 \pmod{6}$ and $n \equiv 5 \pmod{6}$. As in Case 3, a packing with leave L satisfies $|E(L)| \ge m+4$. Now $K_{m,n} = K_{m,n-5} \cup (K_{m-4,5} \setminus M) \cup 2 \times C_6 \cup M \cup 8 \times K_2$ where the partite sets of $K_{m,n-5}$ are V_m and $V_n \setminus \{1_2, 2_2, 3_2, 4_2, 5_2\}$, the partite sets of $K_{m-4,5} \setminus M$ are $V_m \setminus \{1_1, 2_1, 3_1, 4_1\}$ and $\{1_2, 2_2, 3_2, 4_2, 5_2\}$, M is a collection of m-4 edges of $K_{m-4,5}$ as described in Case 1, $2 \times C_6 = \{[1_1, 1_2, 2_1, 2_2, 3_1, 3_2], [2_1, 3_2, 4_1, 5_2, 3_1, 4_2]\}$ and $8 \times K_2 = \{(1_1, 2_2), (1_1, 4_2), (1_1, 5_2), (2_1, 5_2), (3_1, 1_2), (4_1, 1_2), (4_1, 2_2), (4_1, 4_2)\}$. Now $K_{m,n-5}$ can be decomposed into hexagons by Theorem 1.1 and $K_{m-4,5} \setminus M$ can be decomposed into hexagons by Case 1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| = |E(M)| + |E(8 \times K_2)| = m+4$.

Lemma 2.3 A maximal hexagon packing of $K_{m,n}$ where m and n are both odd, $m \ge n \ge 3$, has a leave L satisfying |E(L)| = m + k where k is the smallest nonnegative integer such that $|E(K_{m,n})| - (m+k) \equiv 0 \pmod{6}$.

Proof. The necessary conditions follow as in Lemma 2.2. We now establish sufficiency.

Case 1. Suppose $m \equiv 1 \pmod{6}$, $n \equiv 1 \pmod{6}$, and $m \geq n$. Now $K_{m,n} = (K_{n,n} \setminus M_1) \cup (K_{m-n,n} \setminus M_2) \cup M_1 \cup M_2$ where the partite sets of $K_{n,n} \setminus M_1$ are $\{1_1, 2_1, \ldots, n_1\}$ and V_n , M_1 is a perfect matching of $K_{n,n}$, the partite sets of $K_{m-n,n} \setminus M_2$ are $\{(n+1)_1, (n+2)_1, \ldots, m_1\}$ and V_n ,

and M_2 is a set of m-n edges of $K_{m-n,n}$ as described in Case 1 of Lemma 2.2. Now $K_{n,n} \setminus M_1$ can be decomposed into hexagons by Lemma 2.1 and $K_{m-n,n} \setminus M_2$ can be decomposed into hexagons by Lemma 2.2 Case 1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where |E(L)| = m. Case 2. Suppose $m \equiv 1 \pmod{6}$, $n \equiv 3 \pmod{6}$, and m > n. As in Case 4 of Lemma 2.2, a packing with leave L satisfies $|E(L)| \geq m+2$. Now $K_{m,n} = (K_{n,n} \setminus M_1) \cup (K_{m-n,n} \setminus M_2) \cup M_1 \cup M_2$ where the partite sets of $K_{n,n} \setminus M_1$ are $\{1_1, 2_1, \ldots, n_1\}$ and V_n , M_1 is a perfect matching of $K_{n,n}$, the partite sets of $K_{m-n,n} \setminus M_2$ are $\{(n+1)_1, (n+2)_1, \ldots, m_1\}$ and V_n , and M_2 is a set of m-n+2 edges of $K_{m-n,n}$ as described in Case 5 of Lemma 2.2. Now $K_{n,n} \setminus M_1$ can be decomposed into hexagons by Lemma 2.1 and $K_{m-n,n} \setminus M_2$ can be decomposed into hexagons by Lemma 2.2 Case 5. Therefore a maximal packing of $K_{m,n}$ will have a leave L where |E(L)| = m+2.

Case 3. Suppose $m \equiv 1 \pmod 6$, $n \equiv 5 \pmod 6$, and m > n. As in Case 3 of Lemma 2.2, a packing with leave L satisfies $|E(L)| \geq m+4$. Now $K_{m,n} = (K_{n-4,n-4} \setminus M_1) \cup (K_{m-n+4,n} \setminus M_2) \cup (K_{m,4} \setminus M_3) \cup M_1 \cup M_2 \cup M_3$ where the partite sets of $K_{n-4,n-4} \setminus M_1$ are $\{1_1,2_1,\ldots,(n-4)_1\}$ and $V_n \setminus \{(n-3)_2,(n-2)_2,(n-1)_2,n_2\}$, M_1 is a perfect matching of $K_{n-4,n-4}$, the partite sets of $K_{m-n+4,n} \setminus M_2$ are $\{(n-3)_1,(n-2)_1,\ldots,m_1\}$ and V_n , and M_2 is a set of m-n+4 edges of $K_{m-n+4,n}$ as described in Case 1 of Lemma 2.2, the partite sets of $K_{m,4} \setminus M_3$ are V_m and $\{(n-3)_2,(n-2)_2,(n-1)_2,n_2\}$, and M_3 is a set of 4 edges as described in Case 1 of Lemma 2.2. Now $K_{n-4,n-4} \setminus M_1$ can be decomposed into hexagons by Lemma 2.1, and $K_{m-n+4,n} \setminus M_2$ and $K_{m,4} \setminus M_3$ can be decomposed into hexagons by Lemma 2.2 Case 1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where |E(L)| = m+4.

Case 4. Suppose $m \equiv 3 \pmod{6}$, $n \equiv 1 \pmod{6}$, and m > n. This case follows the same as Case 1, but in this case $K_{m-n,n} \setminus M_2$ can be decomposed into hexagons by Lemma 2.2 Case 2. Again, the leave L in a maximal packing satisfies |E(L)| = m.

Case 5. Suppose $m \equiv 3 \pmod{6}$, $n \equiv 3 \pmod{6}$, and $m \geq n$. This case follows the same as Case 1. Again, the leave L in a maximal packing satisfies |E(L)| = m.

Case 6. Suppose $m \equiv 3 \pmod{6}$, $n \equiv 5 \pmod{6}$, and m > n. Now $K_{m,n} = K_{n-5,4} \cup K_{m-n+4,n-5} \cup K_{m-n-4,4} \cup (K_{n-4,n-4} \setminus M) \cup 6 \times C_6 \cup 8 \times K_2 \cup S_{m-n-4}$ where the partite sets of $K_{n-5,4}$ are $\{1_1, 2_1, \ldots, (n-5)_1\}$ and $\{(m-3)_2, (m-2)_2, (m-1)_2, m_2\}$, the partite sets of $K_{m-n+4,n-5}$ are $\{(n-3)_1, (n-2)_1, \ldots, m_1\}$ and $V_n \setminus \{(n-4)_2, (n-3)_2, (n-2)_2, (n-1)_2, n_2\}$, the partite sets of $K_{m-n-4,4}$ are $\{(n+5)_1, (n+6)_1, \ldots, m_1\}$ and $\{(n-3)_2, (n-2)_2, (n-1)_2, n_2\}$, the partite sets of $K_{n-4,n-4} \setminus M$ are $\{1_1, 2_1, \ldots, (n-4)_1\}$ and $V_n \setminus \{(n-3)_2, (n-2)_2, (n-1)_2, n_2\}$, M is a perfect matching of $K_{n-4,n-4}$ containing the edge $\{(n-4)_1, (n-4)_2\}$, $\{(n-4)_2, (n-4)_2\}$, $\{$

 $C_6 = \{[(n-3)_1, (n-3)_2, (n-4)_1, (n-1)_2, n_1, (n-2)_2], [(n-1)_1, (n-3)_2, n_1, (n-4)_2, (n-2)_1, n_2], [(n-3)_1, (n-1)_2, (n-1)_1, (n-2)_2, (n-4)_1, n_2], [(n+1)_1, (n-3)_2, (n+2)_1, (n-4)_2, (n+3)_1, (n-2)_2], [(n+2)_1, (n-2)_2, (n+4)_1, n_2, (n+3)_1, (n-1)_2], [(n-2)_1, (n-3)_2, (n+4)_1, (n-4)_2, (n+4)_1, (n-4)_2), (n-4)_2, (n$

Case 7. Suppose $m \equiv 5 \pmod{6}$, $n \equiv 1 \pmod{6}$, and m > n. This case follows the same as Case 1, but in this case $K_{m-n,n} \setminus M_2$ can be decomposed into hexagons by Lemma 2.2 Case 2. Again, the leave L in a maximal packing satisfies |E(L)| = m.

Case 8. Suppose $m \equiv 5 \pmod 6$, $n \equiv 3 \pmod 6$, and $m \ge n$. As in Case 3 of Lemma 2.2, a packing with leave L satisfies $|E(L)| \ge m+4$. Now $K_{m,n} = (K_{n,n} \setminus M_1) \cup (K_{m-n,n} \setminus M_2) \cup M_1 \cup M_2$ where the partite sets of $K_{n,n} \setminus M_1$ are $\{1_1, 2_1, \ldots, n_1\}$ and V_n , M_1 is a perfect matching of $K_{n,n}$, the partite sets of $K_{m-n,n} \setminus M_2$ are $\{(n+1)_1, (n+2)_1, \ldots, m_1\}$ and V_n , and M_2 is a set of m-n+4 edges of $K_{m-n,n}$ as described in Case 3 of Lemma 2.2. Now $K_{n,n} \setminus M_1$ can be decomposed into hexagons by Lemma 2.1 and $K_{m-n,n} \setminus M_2$ can be decomposed into hexagons by Lemma 2.2 Case 3. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| = |E(M_1)| + |E(M_2)| = m+4$.

Case 9. Suppose $m \equiv 5 \pmod{6}$, $n \equiv 5 \pmod{6}$, and $m \geq n$. As in Case 4 of Lemma 2.2, a packing with leave L satisfies $|E(L)| \geq m+2$. Now $K_{m,n} = K_{4,n-5} \cup K_{n-5,4} \cup (K_{n-4,n-4} \setminus M_1) \cup (K_{m-n,n} \setminus M_2) \cup 3 \times C_6 \cup C_6$ $6 \times K_2 \cup M_1 \cup M_2$ where the partite sets of $K_{4,n-5}$ are $\{1_1,2_1,3_1,4_1\}$ and $V_n \setminus \{1_2, 2_2, 3_2, 4_2, 5_2\}$, the partite sets of $K_{n-5,4}$ are $V_m \setminus \{1_1, 2_1, 3_1, 4_1, 5_1\}$ and $\{1_2, 2_2, 3_2, 4_2\}$, the partite sets of $K_{n-4, n-4} \setminus M_1$ are $\{5_1, 6_1, \ldots, n_1\}$ and $V_n \setminus \{1_2, 2_2, 3_2, 4_2\}$, M_1 is a perfect matching of $K_{n-4, n-4}$ which contains the edge $(5_1, 5_2)$, the partite sets of $K_{m-n,n} \setminus M_2$ are $\{(n+1)_1, (n+2)_1, \ldots, m_1\}$ and V_n , M_2 is a set of m-n edges as described in Case 1 of Lemma 2.2, $3 \times C_6 = \{[1_1, 2_2, 2_1, 3_2, 5_1, 4_2], [3_1, 2_2, 5_1, 1_2, 4_1, 5_2], [1_1, 3_2, 3_1, 4_2, 2_1, 5_2]\},$ and $6 \times = \{(1_1, 1_2), (2_1, 1_2), (3_1, 1_2), (4_1, 2_2), (4_1, 3_2), (4_1, 4_2)\}$. Now $K_{4, n-5}$ and $K_{n-5,4}$ can be decomposed into hexagons by Theorem 1.1, $K_{n-4,n-4}$ M_1 can be decomposed into hexagons by Lemma 2.1, and $K_{m-n,n} \setminus M_2$ can be decomposed into hexagons by Lemma 2.2 Case 1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| = |E(M_1)| + |E(M_2)| +$ $|E(6\times K_2)|=m+2.$

Lemma 2.4 A maximal hexagon packing of $K_{m,n}$ where m and n are even, $m, n \geq 4$, has a leave L satisfying:

- (1) |E(L)| = 0 when $m \equiv 0 \pmod{6}$,
- (2) |E(L)| = 4 when $m \equiv n \equiv 2 \pmod{6}$ or $m \equiv n \equiv 4 \pmod{6}$, and
- (3) |E(L)| = 8 when $m \equiv 2 \pmod{6}$ and $n \equiv 4 \pmod{6}$.

Proof. We consider cases.

Case 1. Suppose $m \equiv 0 \pmod{6}$, $n \equiv 0 \pmod{2}$, and $n \geq 4$. Then $K_{m,n}$ can be decomposed into hexagons by Theorem 1.1 and in a maximal packing, |E(L)| = 0.

Case 2. Suppose $m \equiv n \equiv 2 \pmod{6}$, $m, n \geq 4$, Now $|E(K_{m,n})| \equiv 4 \pmod{6}$, so it is necessary that a packing have leave L with $|E(L)| \geq 4$. Now $K_{m,n} = K_{m-8,n} \cup K_{8,n-8} \cup 10 \times C_6 \cup C_4$ where the partite sets of $K_{m-8,n}$ are $\{9_1, 10_1, \ldots, m_1\}$ and V_n , the partite sets of $K_{8,n-8}$ are $\{1_1, 2_1, \ldots, 8_1\}$ and $\{9_2, 10_2, \ldots, n_2\}$, $10 \times C_6 = \{[2_1, 2_2, 4_1, 8_2, 1_1, 3_2], [3_1, 3_2, 5_1, 1_2, 2_1, 4_2], [4_1, 4_2, 6_1, 2_2, 3_1, 5_2], [5_1, 5_2, 7_1, 3_2, 4_1, 6_2], [7_1, 7_2, 1_1, 5_2, 6_1, 8_2], [8_1, 8_2, 2_1, 6_2, 7_1, 1_2], [8_1, 3_2, 6_1, 1_2, 4_1, 7_2], [6_1, 6_2, 1_1, 4_2, 5_1, 7_2], [1_1, 1_2, 3_1, 8_2, 5_1, 3_2], [2_1, 5_2, 8_1, 6_2, 3_1, 7_2]\}$, and $C_4 = [7_1, 2_2, 8_1, 4_2]$. Now $K_{m-8,n}$ and $K_{8,n-8}$ can be decomposed into hexagons by Theorem 1.1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| = |E(C_4)| = 4$.

Case 3. Suppose $m \equiv n \equiv 4 \pmod{6}$, As in Case 2, a packing with leave L satisfies $|E(L)| \geq 4$. Now $K_{m,n} = K_{m-4,n} \cup K_{4,n-4} \cup 2 \times C_6 \cup C_4$ where the partite sets of $K_{m-4,n}$ are $V_m \setminus \{1_1, 2_1, 3_1, 4_1\}$ and V_n , the partite sets of $K_{4,n-4}$ are $\{1_1, 2_1, 3_1, 4_1\}$ and $V_n \setminus \{1_2, 2_2, 3_2, 4_2\}$, $2 \times C_6 = \{[1_1, 1_2, 2_1, 2_2, 3_1, 3_2], [4_1, 1_2, 3_1, 4_2, 2_1, 3_2], \text{ and } C_4 = [1_1, 2_2, 4_1, 4_2].$ Now $K_{m-4,n}$ and $K_{4,n-4}$ can be decomposed into hexagons by Theorem 1.1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| \equiv |E(C_4)| = 4$.

Case 4. Suppose $m \equiv 2 \pmod 6$, $m \geq 8$, and $n \equiv 4 \pmod 6$. Now $|E(K_{m,n})| \equiv 2 \pmod 6$, so it is necessary that a packing have a leave L with $|E(L)| \geq 2$. Now each vertex of $K_{m,n}$ is of even degree and each vertex of C_6 is of even degree, so for any packing, the vertices of L must be of even degree. However, we cannot have this property when |E(L)| = 2. So it is necessary that a packing have a leave L with $|E(L)| \geq 8$. Now $K_{m,n} = K_{8,n-4} \cup K_{m-8,n} \cup 4 \times C_6 \cup 2 \times C_4$ where the partite sets of $K_{8,n-4}$ are $\{1_1, 2_1, \ldots, 8_1\}$ and $V_n \setminus \{1_2, 2_2, 3_2, 4_2\}$, the partite sets of $K_{m-8,n}$ are $\{9_1, 10_1, \ldots, m_1\}$ and $V_n \setminus 4 \times C_6 = \{[1_1, 1_2, 2_1, 2_2, 3_1, 3_2], [4_1, 1_2, 3_1, 4_2, 2_1, 3_2], [5_1, 1_2, 6_1, 2_2, 7_1, 3_2], [8_1, 1_2, 7_1, 4_2, 6_1, 3_2]\}$, and $2 \times C_4 = \{[1_1, 2_2, 4_1, 4_2], [2_2, 5_1, 4_2, 8_1]\}$. Now $K_{8,n-4}$ and $K_{m-8,n}$ can be decomposed into hexagons by Theorem 1.1. Therefore a maximal packing of $K_{m,n}$ will have a leave L where $|E(L)| = |E(2 \times C_4)| = 8$.

Lemmas 2.2-2.4 combine to give our main result.

Theorem 2.1 A maximal hexagon packing of $K_{m,n}$ with leave L satisfies (1) when $m \equiv 0 \pmod{2}$ and $n \equiv 1 \pmod{2}$, |E(L)| = m + k where k is the smallest nonnegative integer such that $|E(K_{m,n})| - (m+k) \equiv 0 \pmod{6}$, (2) when $m \equiv n \equiv 1 \pmod{2}$ and $m \geq n$, |E(L)| = m + k where k is the smallest nonnegative integer such that $|E(K_{m,n})| - (m+k) \equiv 0 \pmod{6}$, (3) when $m \equiv 0 \pmod{6}$ and $n \equiv 0 \pmod{2}$, |E(L)| = 0, (4) when $m \equiv n \equiv 2 \pmod{6}$ or $m \equiv n \equiv 4 \pmod{6}$, then |E(L)| = 4, and

(5) when $m \equiv 2 \pmod{6}$ and $n \equiv 4 \pmod{6}$, then |E(L)| = 8.

References

- [1] A. Brouwer, Optimal Packings of K_4 's into a K_n , Journal of Combinatorial Theory, Series A 26(3) (1979), 278–297.
- [2] J. Kennedy, Maximum Packings of K_n with Hexagons, Australasian Journal of Combinatorics 7 (1993), 101–110.
- [3] J. Kennedy, Maximum Packings of K_n with Hexagons: Corrigendum, Australasian Journal of Combinatorics 10 (1994), 293.
- [4] J. Schönheim, On Maximal Systems of k-Tuples, Studia Sci. Math. Hungarica (1966), 363–368.
- [5] J. Schönheim and A. Bialostocki, Packing and Covering of the Complete Graph with 4-Cycles, Canadian Mathematics Bulletin 18(5) (1975), 703-708.
- [6] D. Sotteau, Decompositions of $K_{m,n}$ ($K_{m,n}^*$) into Cycles (Circuits) of Length 2k, Journal of Combinatorial Theory, Series B, **30** (1981), 75-81.