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Abstract. Let K, ,, denote the complete bipartite graph on m--n vertices
with partite sets of cardinalities m and n. We give necessary and sufficient
conditions for the existence of a 6-cycle packing of Kpn.

1. Introduction

A decomposition of a simple graph G into isomorphic copies of a graph
g is a set {g1,92,..., gn} where g; = g and V(g;) C V(G) for all i,
ki3

E(g%-)ﬂE(gj) = { for i # j, and UE(gz) = F(G), where V(G) is the

i=1

vertex set of graph G' and E(G) is the edge set of graph G. We will refer
to such a decomposition as a “g decomposition of G.” In the event that a
g decomposition of (7 does not exist, we can ask the question “How close
can we get to a g decomposition of G?7”

A magzimal packing of a simple graph G with isomorphic copies of a
graph g is a set {g1,92,...,9n} where g; = g and V(g;) C V(G) for all ¢,

T

E(g:) N E(gs) = Dfori # j, | | g: € G, and | E(G) \ UL, E(gs)| is minimal.
i=1

The set of edges for the leave, L, of the packing is E(L) = E(G)\U™, E(g;).

Packings of complete graphs have been studied, for example, for the graph

g a 3-cycle [4], a d-cycle [5], K4 [1], and a 6-cycle [2, 3]. :

Let Ky, n denote the complete graph on m +n vertices with partite sets
of cardinalities m and n. Throughout this paper, unless noted otherwise,
we denote the partite sets as V, and V,, where V,, = {11,24,...,my}
and V,, = {12,22,...,n2}. We denote the 6-cycle, Cg or “hexagon,” with
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edge set {(a,b), (b,¢), (¢, d), (d,e), (e, f), (f,a)} as [a, b, ¢, d, e, f] (and anal-
ogously for other length cycles). The purpose of this paper is to give neces-
sary and sufficient conditions for a maximal packing of K., » with hexagons.

Conditions for a hexagon decomposition of K, ,, were given by Sotteau
[6]:

Theorem 1.1 The complete bipartite graph Ko, .. can be decomposed into
hezagons if and only if m =0 (mod 6) and n = 0 (mod 2), n > 4.

2. The Packing Results

We now consider hexagon packings of K, .

Lemma 2.1 A hezagon decomposition of K, , \ M, where M 1is a perfect
matching of Ky, o, exists if and only if n =1 or 3 (mod 6).

Proof. First we need [E(K,,,\ M)|=n?-n=0 (mod6),son=0or1
(mod 3) is necessary. Since each vertex of a hexagon is of even degree and
each vertex of Ky » \ M has degree n — 1, we need n odd. Therefore n = 1
or 3 (mod 6) is necessary. In this lemma, we assume the vertex set of K, ,,
has partite sets {01,1;,...,(n —~ 1)1} and {02,12,...,(n — 1)2}.

We now consider cases. In each case, the vertex labels are reduced
modulo n and the collection of hexagons form a decomposition of K, ,,.
Case 1. Suppose n = 1 (mod 12), say n = 12k -+ 1. Consider the hexagons:
{[i1, (125+4)a, (12k-+1)1, (12 +144)s, (12k—1-+i)1, (125-+4+8)a), [i1, (125+
54 i)z, (126 — 1+ 4)1, (125 + 7 + i)2, (12k +4)3, (12 + 10 + 3)g) | & =
0,1,...,12k;5 = 0,1,...,k — 1}. In this case, E(M) = {(i1, (12k + i)3) |
i=0,1,...,12k}.

Case 2. Suppose n = 7 (mod 12), say n = 12k + 7. Consider the hexagons:
{[?l]_, (12j + 4)2, (12k + 6 + 1)1,(127 + 1 + 4)9, (126 + 5 + )4, (125 + 4 +
i)z], [?:1, (12j+5+’i)2, (12]€+5+i)1, (12j+7+i)2, (12k+6+i)1, (12j+10+i)2] |
i=0,1,...,12k+6;5 =0, 1,..., k—-1YU{[i1, 12k +i)g, (12k+6+i);, (12k+
1 +44),(12k+5+1)1,(12k +- 4+ i)a] | ¢ = 0,1,...,12& -+ 6}. In this case,
EB(M) = {(i1,(12k+5+1)3) | i =0,1,...,12k -+ 6}.

Case 3. Suppose n = 3 (mod 36), say n = 36k + 3. Consider the hexagons:
{[i1, (125 + )2, (36 + 2 -+ i)y, (125 + 1 -+ 4)a, (36K + 1 +4)1, (125 + 4 +
2)2], (61, (124+5+1)9, (36k+1+14)1, (125 +7+14)2, (36k+2+1)1, (125+10+1)9] |
i=0,1,...,36k+2,5=0,1,..., k= 1}U{[i1, (127 + 12k L7 4-1)2, (36K +2+
)1, (125 +12k+8+14)q, (36k + 1+ 1)1, (125 + 12k + 11 +4-1)2], [¢1, (125 + 12k +
12-+1)9, (36k+1+4)1, (125 412k-+14+1) 2, (36k+2+1)1, (125 +12k+-17+1)9] |
t=0,1,...,36k+2;7 =0,1,..., k-2 U{[é1, (125 +24k+14+4)2, (36K -+ 2+
1)1, (12j + 24k +15+1i)s, (36k+1+1)1, (125 + 24k +18-+4)2), [i1, (125 +24k +
- 1944)g, (36k-+1-+4)1, (127+24k+2141)2, (36k+2+41)y, (125+24k+2444)s) |
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i=0,1,...,36k+2;5 = 0,1,..., k—2}U{[i1, (12k+4)2, (36k +1+i)1, (12k+
2+4+14)3, (36k+2 1)1, (12k+5 +1)2], [41, (24k — 5 +14)a, (36k+2 +1)q, (24k —
4 +1)2, (36K -+ 1 -+ 1)1, (24k — 1+ 4)3], [i1, (24K + 1)3, (36K + 1)1, (24k + 2 +
i)2, (36k + 1 + 1)1, (24k + 6 + 5)2], [i1, (24K + 7+ 4)o, (836k + 1 - i)y, (24k +
9+ 1)z, (36k -+ 2 +14)1, (24k + 124+ 1)) | 4= 0,1,...,36k + 2} U {[éy, (12k +
1+14)g, (24k + 2 4 i)y, 49, (126 + 1+ 4)1, (24k + 2 +1)2] | 4 =0,1,...,12k}.
In this case, E(M) = {(i1,(36k+2+14)2) |1 =0,1,...,36k+ 2}.

Case 4. Suppose n = 9 (mod 36), say n = 36k-+9. Consider the hexagons:
{li1, (125 + 4)2, (36K + 8 + €)1, (125 + 1 + ©)a, (36k + 7 + 2)1, (125 + 4 -+
i)a], li1, (127-+5+4)2, (36k+T-+0)1, (125+7+4)2, (36k+8+41)1, (125+10-+4)] |
i=0,1,...,36k+8;5=0,1,..., k—1}U{{i1, (125 + 12k +T7+1)s, (36k + 8+
)1, (125 + 12k + 8 +1)3, (36k + 7 +14)1, (125 + 12k + 11 +14)a], i1, (125 + 12k +
12+1)2, (36k-+7+1)1, (125 +12k+14+4),, (36k+8+4)1, (125 +12k-+17-+4)3] |
i=0,1,...,36k+8;5 = 0,1,..., k—2}U{[i1, (124 24k +14+1),, (36k+8+
)1, (125 +24k 415 +14)2, (36k + 7)1, (125 +24k -+ 18-+14)9], [11, (125 + 24k -+
19+1)2, (36k+7+4)1, (125424k+2141)2, (36k+8+i)1, (125+24k+24-+4)5] |
t=0,1,...,36k+8;5=0,1,..., k—2YU{[i1, (12k+1)2, (36k+8-+1)1, (12k-+
3+ 1), (1+14)1, (12k+ 6 +4)2), [i1, (24k — 5 +4)2, (36k + 8+ 1)1, (24k — 4 +
i), (36]6 + 7+ i)l, (24!8 -1+ i)g], [i1, (24]0 + i)z, (36]13 + 7+ ?:)1, (24k +1 4
i)z, (36k+6 +1i)1, (24k+5+‘i)2], [il, (24k+7+i)2, (36k -+ T+, (24k+9+
i)2, (36k + 8+ 4)1, (24K + 12+ )q), [ia, (36K + 2+14)2, (36K -+ 8 4-4)1, (36K -+
3+1)2, (36k+7+14)1, (36k+6+17)9] | i =0,1,...,36k+8} U {[i1, (12k-+3+
£)2, (24k + 6 + 3)1, 42, (12k + 3+ 4)1, (24k + 6 +14)2] | i = 0,1,..., 12k + 2}.
In this case, B(M) = {(i1,(36k + 7 +1)2) | 2=0,1,...,36k + 8}.

Case b. Suppose n = 15 (mod 36), say n = 36k + 15. Consider the
hexagons: {[i1, (125 +14)a, (36k+14+4)1, (125 +1+14)2, (36k-+1341);, (125 +
4+1)a], [i1, (125 +541)2, (36k+13+)y, (125 +7+1)2, (36k+1444)1, (125 +
10+4)2] 14=0,1,...,36k+14;5 = 0,1,...,k — 1} U {[1, (125 + 12k + 7 +
i)2, (36k 4+ 14 +4)1, (127 + 12k + 8 -+ 4)a, (36k + 13 + 1)y, (125 + 12k + 11 +
i)2], [¢1, (125 4+ 12k 4 12 +4)g, (36k + 13+ 4)1, (125 + 12k + 14 + 1), (36K +
14414)1, (125 + 12k + 17 +4)2) | £ =0,1,...,36k+ 14;j =0,1,...,k —1}U
{31, (125 + 24k - 14 + 3)q, (36k + 14 +14)1, (127 + 24k + 15 1)a, (36k + 13 +
)1, (125 +24Kk-+-1844)3), [41, (125 424k +19+1)q, (36k+13+-4)1, (125 + 24k +
21 +1i)o, (36k + 14 +4)1, (125 + 24k + 24+ 4)2) | i = 0,1,...,36k + 14; j =
0,1,...,k—1}U{[i1, (12k + )9, (36k + 14 +%)1, (126 + 1 +)q, (36k + 13 +
1, (12k + 4 + 4)a], 41, (24k + 7 + 4)o, (36K + 14 4 1)1, (24k 4 10 +14)9, (1 +
)1, (24513 +4d)2] [ 1 =0,1,...,36k+ 14} U{[é1, (12k+5+14)a, (24k+ 10 +
01,82, (12k + 5 414)1, (24k + 10 +4)3] | i = 0,1,...,12k + 4}. In this case,
E(M) ={(i1,(36k + 14 +4)2) | i = 0,1, ..., 36k + 14}.

Case 6. Suppose n = 21 (mod 36), say n = 36k + 21. Consider the
hexagons: {[i1, (127 +1)2, (36k+20+1)1, (127 -+ 1-+4)2, (36k +19+4)y, (125 +
4+14)a), [¢1, (12545 +14)2, (36k-+19-+1)1, (12747 +14)2, (36K +20+14)1, (125 +
10+4)2) |4=0,1,...,36k+20;j=0,1,..., k— 1} U{[i1, (12§ + 12k + 19 +
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D)2, (36K + 20+ 4)1, (124 + 12k + 20 1+ 1)g, (36k + 19 +4)1, (127 + 12k + 23 +
D)a], [i1, (125 + 12k + 24 + 1), (36K + 19+ )1, (124 4 12k + 26 +i)2, (36k +
20+1)1, (125 + 12k -+ 29 +14)3] | i =0,1,...,36k+20;5 =0,1,...,k—2}U
{[i1, (127 + 24k + 26 4 4)a, (36k + 20 +1)1, (124 + 24k + 27 + )2, (36k + 19 +
)1, (125 +24k+30+14)a], [i1, (125 + 24k +3141)2, (36k+ 1940}, (125 +24k+
33 +1)g, (36k + 20 + 4)1, (125 + 24k + 36 + )] | £ = 0,1,...,36k + 20, =
0,1,...,k—2YU{[ir, 12k +1%)z2, (36K +20 +14)1, (12k -+ 1 + )2, (36k + 19 +
)1, (12k+4+4)a}, 41, (12k-+5+14)g, (36K +18+14)1, (12k+T7-+i)2, (36k+19+
D1, (12k+11+4)g), [i1, (12K + 1241)s, (36K + 19+ 1)y, (12k+14-+14)g, (36k +
20+'L)1, (12k+17+%)2], [Z]_, (24k+7+’&)2, (361%‘1‘20"{"&)1, (24k+8+%)2, (36]9“1‘
19 + 1)1, (24k + 11 4 4)g], [i1, (24k + 12 + 0)g, (86k + 18 + 1)1, (24K + 14 -+
i), (36-16'“1“19“1“‘2:)1, (24k+18+’i)2], [’i1, (24k+19+?:)2, (36k+19 +’i)1, (24k -+
21+4)a, (36k-+20-+1)1, (24k+24-4)s), [i1, (36k+14-4)a, (36k+20-+4)1, (36k-+
154-9)2, (36k + 19 +4)1, (36k +18+12)9] | 1 = 0, 1,...,36k 420} U {[i1, (12k +
T4i), (24k+14+44)1, dn, (12k+7+1)1, (24k+14+14)2] |1 =0, 1,...,12k+6}.
In this case, E(M) = {(iy, (36k + 19 +14)2) | 4 = 0,1,...,36k + 20}.

Case 7. Suppose n = 27 (mod 36), say n = 36k + 27. Consider the
hexagons: {[i1, (127 41)g, (36k+26+1)1, (12§ +1+1)2, (36K -+-25-+1)1, (125 +
4+1)z), [i1, (125 +5+14)2, (36k+ 25+ 4)1, (127 +7+14)2, (36k +26+14)1, (125 +
1044)2] |t =0,1,...,36k+26;5 = 0,1,...,k—1} U {[ir, (125 + 12k + 19 +
2)a, (36k + 26 4 1)1, (125 + 12k + 20 + i)y, (36k + 25 -+ 4)1, (125 + 12k + 23 +
Dal, [i1, (127 + 12k + 24 + )2, (36k + 25 +2)1, (125 + 12k + 26 + i);, (36K +
26+ 1)1, (127 4+ 12k + 29 +4)2] | = 0,1,...,36k + 26,5 = 0,1,...,k— 2} U
{[#1, (125 -+ 24k + 26 -+ 3)2, (36k + 26 -+ 1)y, (127 + 24k + 27 +14)2, (36k + 25 +
‘i)l, (123+24k+30)2], [?:1, (12_]+24’€ 431 +i)2, (36k+25+%)1, (123‘ + 24k +
33 +1)9, (36k + 26 +4)1, (125 + 24k + 36 +i)9] | i = 0,1, ..., 36k - 26,5 =
0,1,...,k—1}YU{[é1, (12k -+ 1)z, (36k + 26 + 1)1, (12k + 1 +4)g, (36k -+ 25 +
D1, (12k+4+14)g], [#1, (L2k +5+1%)2, (36k+25-+1)1, (12k+6+14)2, (36K +23+
D1, (12k 4 11+ 9)2)], [i1, (12 + 12 + )2, (36k + 26 4+ 4)1, (126 + 15+ %)2, (1 +
)1, (12 + 18 -+ 1)), [i1, (24k + 7 4 4)2, (36k + 26 + 1)1, (24K + 8+ 1)g, (36K +
25 + 1)1, (24k + 11 + ©)3], 61, (24k + 12 + )2, (36k + 25 + )1, (24K + 13 +
i)e, (36k +24+14)1, (24k +17+1)a}, [i1, (24k +19-+4), (36k +25+i)1, (24K -+
21 +1)g, (36k + 24+ 1)1, (24k + 22 + 0)g] } U {[i1, (12k + 9 + )2, (24K +- 18 +
8)1,%0, (12k + 9 +i)1, (24k + 18 + 1)) | £ = 0,1,...,12k + 8}. In this case,
E(M) = {(i1,(36k + 26 +i)1) | i = 0,1,...,36k 4 26}.

Case 8. Suppose n = 33 (mod 36), say n = 36k -+ 33. Consider the
hexagons: {[i1, (127 +14)2, (36k+32+14)1, (127 +1+1)2, (365 +31+1)1, (125 +
4+4)3], [i1, (125 +5+1)2, (36k+31 1)1, (12 +7+i)a, (36k-+32+14)1, (125 +
10+14)9] |4 =0,1,...,36k+32;7=0,1,...,k—1} U {[é1, (125 + 24k + 26 +
i)2, (36K + 32 4 4)1, (125 + 24k + 27 + i)2, (36k + 31 4- 1)1, (127 + 24k + 30 +
i)al, i1, (125 + 24k + 31 +4)q, (36k + 31 -+ )1, (125 + 24k + 33 + )2, (36& +
32+ )1, (1274+ 24k +36 +14)2) |i=0,1,...,36k+32;7=0,1,...,k—1}U
{[31, (12K + 1)q, (36K + 32 + @)1, (12k + 1 + i)z, (36K + 31 + 7)1, (12k + 4 -+
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i)2], [i1, (12k -+ 5+ i)2, (36K +- 31 +4)1, (12k + 6 +4)2, (36k + 30 + 1)1, (12k +
10 + 4)a], 41, (12K + 12 + 4)9, (36K -+ 31 + 1)y, (12k + 14 + 1)q, (36% + 32 +
01, (12k+ 17 +1)g], [i1, (36K + 26+ 1), (36k +32+1)1, (36k + 27 +1),, (36k +
31414}y, (36k+30-+14)9] | i = 0,1,..., 36k 32} U{[ix, (12k 4+ 11 41),, (24K +
22 +4i)1,42, (126 + 11 +4)1, (24k + 22+ 1)o] [ $ = 0,1,...,12k + 10}. In thls

case, B(M) = {(i1, (36k + 31 +)3) | i = 0,1,..., 36k + 32}.

Lemma 2.2 A mazimal hezagon packing of Ky n where m is even and n
is odd (m > 4,n > 3) has a leave L satisfying |E(L)| = m + k where k is
the smallest nonnegative integer such that |E(Kpy,)| — (m + k) = 0 (mod
6).

Proof. Since each vertex of V;, is of odd degree in K., 5, in the leave of a
packing each of these vertices will be of odd degree. Therefore in a packing
of Kpm,n with leave L, it is necessary that [E(L)| > m. Since K, is a
unjon of L and a collection of hexagons, then |E(Kpm, )| = |E(L)| (mod 6).
So in a maximal packing, it is necessary that |E(L)| = m + k where k is as
described. We now establish sufficiency.

Case 1. Suppose m = 0 (mod 6) and n = 1 (mod 2). Now K, =
Kmnn-3U % x (K33\ M) % x M where the partite sets of Kypp-3
are Vi, and V, \ {1g,25,32}, the partite sets of the ith K33 \ M are
{(3i = 2)1, (39 — 1)1, (34)1} and {12,29, 32}, and M is a perfect matching of
K33. Now K, .3 can be decomposed into hexagons by Theorem 1.1 and
each K33\ M can be decomposed into hexagons by Lemma, 2.1. Therefore
a maximal packing of K, , will have a leave I where |[E(L)| =m

Case 2. Suppose m = 0 (mod 2), m > 4, and n = 1 (mod 6). Now
Kpmn = Km,n—1USm where the partite sets of Ky, .1 are Vi, and V,\ {12},
and the edge set of S, is {(41,12) | ¢ = 1,2,...,m}. Now K, ,_1 can be
decomposed into hexagons by Theorem 1.1. Therefore a maximal packing
of K, will have a leave L where |E(L)| = m

Case 3. Suppose m = 2 (mod 6), m > 4, and n = 3 (mod 6). Now
|E(Kmn| —m = 4 (mod 6), so it is necessary that a packing have a
leave L with [E(L)| > m +4. Now Ky = Kpn-3 U (K. 83 \ M) U

2 X Cg UMUI2 x Ky where the partite sets of K, -3 are V,, and
Vi \ {12,22, 32}, the partite sets of K,,—g3 \ M are {9;,10,,.. .,my} and
{12,22,32}, M is a collection of m — 8 edges of K, 8,3 as described in Case
1, 2 x Cg = {[31, 22,41, 32,51, 13], [61732:81522)71112]}f and 12 x Ky =
{(11,12), (11,22}, (11, 32), (21, 12), (21, 22), (21, 32), (31, 32), (41, 12), (51, 22),
(61,22), (71,32), (81, 12)}. Now K, .3 can be decomposed into hexagons
by Theorem 1.1 and Kp,..g3 \ M can be decomposed into hexagons by
Case 1. Therefore a maximal packing of K., ., will have a leave L where
|E(L)| = |[E(M)} + [F(12 x K3)] = m + 4.

Case 4. Suppose m = 2 (mod 6), m > 8, and n = 5 (mod 6). Now
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|E(Kmn)l —m = 2 (mod 6), so it is necessary that a packing have a
leave L with |E(L)] > m + 2. Now Kypn = Knn-s5 U (Km-gs \ M) U
5 x Cg U 10 x Ky where the partite sets of Ky n.5 are Vi, and V,, \
{12, 29, 39,42, 52}, the partite sets of K,,-8.5 \ M are {91, 104,..., m1'} and
{13, 22, 32, 42, 52}, M is a collection of m—8 edges as described in Case 1, 5
Ces = {[11, 12,21, 22,31, 32, (21, 32, 41, 52, 31, 4}, [51, 12,61, 22, 71, 32|, [61, 32,
81, 52, 71, 42], [81, 12,41, 22, 11, 42] }, and 10x K3 = {(11, 52), (21, 52), (31, 12),
(41, 42), (51,22), (51,42), (51, 52), (61, 52), (71, 12), (81,22)}. Now Ky ns
can be decomposed into hexagons by Theorem 1.1 and Kp—-gs5 \ M can
be decomposed into hexagons by Case 1. Therefore a maximal packing of
Ko will have a leave L where |E(L)| = |E(M)| + |E(10 x K3)| = m + 2.
Case 5. Suppose m = 4 (mod 6) and n = 3 (mod 6). As in Case 4, a
packing with leave L satisfies |E(L)] > m + 2. Now Ky, = Kpp-3 U
(Km-a4,3 \M)UCs UM U6 x K, where the partite sets of K, .3 are Vi,
and Vy, \ {12, 22, 32}, the partite sets of K43\ M are V;,,\ {11,21,31,41}
and {12,22,32}, M is a collection of m — 4 edges of K,,..4,3 as described in
Case 1, C(j = {11, 19,21, 292,31, 32], and 6 x Ky = {(11, 22), (21,32), (31, 12),
(41,12), (41, 22), (41,32)}. Now K, n—3 can be decomposed into hexagons
by Theorem 1.1 and K,,43 \ M can be decomposed into hexagons by
Case 1. Therefore a maximal packing of K, will have a leave L were
[E(L)| = |E(M)| + [B(6 x K3)| =m +2.

Case 6. Suppose m = 4 (mod 6) and n = 5 (mod 6). As in Case 3, a pack-
ing with leave L satisfies |F(L)] > m+4. Now Kpmp = K5 U (K45 \
M)U2 x CgUMUB8 x Ky where the partite sets of K -5 are Vi, and V,, \
{14,22,32,42, 52}, the partite sets of K45\ M are Vip\{11,21, 31,41} and
{13,22,32,42,52}, M is a collection of m — 4 edges of Ky,_45 as described
in Case 1, 2 x Cg = {[11, 19,24, 25, 31, 32], [21, 33, 41, 92,31, 42]} and 8 x
K; = {(117 22)3 (11: 42): (11: 52)? (21, 52): (311 12)5 (41? 12): (4la 22)’ (41}42)}‘
Now K n—5 can be decomposed into hexagons by Theorem 1.1 and Kr,-.4,5\
M can be decomposed into hexagons by Case 1. Therefore a maximal pack-
ing of Ky, », will have aleave L where | E(L)| = |E(M)|+|E(8x K3)| = m+4.

L.etnma 2.3 A mazimal hexagon packing of Ky, n where m and n are both
odd, m > n > 3, has a leave L sotisfying |E(L)| = m + k where k is the
smallest nonnegative integer such that |E{(Kpp)| — (m+ k) =0 (mod 6).

Proof. The necessary conditions follow as in Lemma 2.2. We now establish
sufficiency.

Case 1. Suppose m = 1 {mod 6}, n = 1 (mod 6), and m > n. Now
K = (Knn \ M) U(Km_nn \ Ma)U M, UM, where the partite sets of
Ko\ My are {11,21,...,n1} and V,,, M; is a perfect matching of Ki,,n,
the partite sets of Kponn \ Ma are {(n + 1)1, (n-+ 2)1,...,m1} and Vp,
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and M» is a set of m —n edges of K,,_p, 5, as described in Case 1 of Lemma,
2.2. Now Kp.n \ M; can be decomposed into hexagons by Lemma 2.1
and Kiy—n,n \ M2 can be decomposed into hexagons by Lemma, 2.2 Case 1.
Therefore a maximal packing of K, » will have a leave L where |E(L)| = m.
Case 2. Suppose m = 1 (mod 6), n = 3 (mod 6), and m > n. As in Case
4 of Lemma 2.2, a packing with leave L satisfies |F(L)| > m + 2. Now
Kppn = (Kpn \ M1) U (Kmen,n \ M2) U M; U My where the partite sets of
Kpn \ My are {11,21,...,n1} and V;,, M is a perfect matching of K, ,,
the partite sets of Ky _nn \ Ma are {(n+ 1)1, (n + 2},...,m1} and V,,,
and M; is a set of m — n + 2 edges of Ky, as described in Case 5 of
Lemma 2.2. Now K, ,, \ M7 can be decomposed into hexagons by Lemma.
2.1 and Kpy—rn \ M2 can be decomposed into hexagons by Lemma, 2.2
Case 5. Therefore a maximal packing of K, , will have a leave L where
|E(L)] =m + 2.

Case 3. Suppose m = 1 (mod 6), n = 5 (mod 6), and m > n. As in Case
3 of Lemma 2.2, a packing with leave L satisfies |E(L)| > m + 4. Now
Km,n = (Kn-—fl,n-tl \ Ml) U (Km—n+4,n \ M2) U (Km,4 \ M’B) U Ml U M2 U
My where the partite sets of K,,_4,,,—4 \ M1 are {11,21,...,(n —4)1} and
Va\{(n—3)2, (n—2)q, (n—1)2,n2}, M, is a perfect matching of K,,_4 54,
the partite sets of Koy nqan \ Mz are {{(n —3)1,(n—2)1,...,m1} and V,,,
and M is a set of m — n -+ 4 edges of Kp—nta,n 8s described in Case 1
of Lemma 2.2, the partite sets of Kp 4 \ M3 are V,, and {{(n — 3)q, (n —
2)2, (n—1)2,n2}, and Mj is a set of 4 edges as described in Case 1 of Lemma
2.2. Now K4 n—4\ M1 can be decomposed into hexagons by Lemma 2.1,
and K nyan \ M2 and K,, 4 \ M3 can be decomposed into hexagons by
Lemma 2.2 Case 1. Therefore a maximal packing of K., ,, will have a leave
L where |E(L)| =m + 4.

Case 4. Suppose m = 3 (mod 6), n = 1 (mod 6), and m > n. This
case follows the same as Case 1, but in this case Ky, \ M3 can be
decomposed into hexagons by Lemma 2.2 Case 2. Again, the leave L in a
maximal packing satisfies |E(L)| = m.

Case 5. Suppose m = 3 (mod 6), n = 3 (mod 6), and m > n. This
case follows the same as Case 1. Again, the leave L in a maximal packing
satisties |E(L)| = m.

Case 6. Suppose m = 3 (mod 6), n = 5 (mod 6), and m > n. Now
Km,n = Nn-54 UK —n+4,n—-5 UK. —n—4,4 U (Kn—4,n—4 \ M) U6 x 06 U
8 x KU 5ip-n -4 where the partite sets of K,_s5,4 are {11,21,...,(n =5} }
and {{m — 3)2,(m — 2)2, (m — 1)2,ma}, the partite sets’ of Kp—nian-5
are {{(n—3)1,(n —2)1,...,m1} and V,, \ {(n — 4)2, (n — 3)2, (n — 2)2, (n —
1)2,n2}, the partite sets of Kpy—n_44 are {(n+ 5)1, (n+6)1,...,m1} and
{(n — 3)2,(n — 2)a,(n — 1)2,n2}, the partite sets of K,.g4n-4 \ M are
{11,21,...,(n —4)} and V, \ {(n — 3)a, (n — 2)2,(n — 1)2,m2}, M is a
perfect matching of K,,_4 ,_4 containing the edge ({(n — 4)1, (n — 4)3), 6 x

103



Ce = {[(TL =3, (n - 3)21 (n - 4)1: (n - 1)21”’1’ (n - 2)2]’ [(n ~ 1, (n -
3)2:77'1}(” - 4)21 (n - 2)1772'2]1 [(n - 3)1= (?’L - 1)21 (n - 1)1: (TL - 2)2= (n -
4)1,%2], [(n+1)11 (n“3)21 (n+2)1’ (n““4)25 (n+3)1: (n—2)2]’ [(n+2)1= (?’L—-
2)2’ (n+4)1? n2, (n+3)1: (n - 1)2]1 [(n - 2)11 (n - 3)21 (?’L + 4)11 (n _4)2: (n+
D1, (n = 12}, 8 x Ky = {{(n — 3)1,(n - 4)2), (n — 2)1,(n — 2)2), ((n -
1)1, {n—~4)2), (n1,n2), (n-+ 1)1, n2), ((n+2h, na), ((n+3)1, (n—3)2), ((n+
4)1,{n—1)2)}, and E(Sp—n—-4) = {{((n—4)2, (n+4+i)1) |i=1,2,...,m—
n—~A4}. Now Kp_s5 4, Km—nta,n-5, and Kp,_,_4 4 can be decomposed into
hexagons by Theorem 1.1, and K, 4,4 \ M can be decomposed into
hexagons by Lemma 2.1. Therefore a maximal packing of K, , will have
a leave L where |E(L)| = |E(M)| + |E(8 x K2)| + |E(Sm-n-4)| = m.
Case 7. Suppose m = 5 (mod 6), n = 1 {mod 6), and m > n. This
case follows the same as Case 1, but in this case K, nn \ M2 can be
decomposed into hexagons by Lemma 2.2 Case 2. Again, the leave L in a
maximal packing satisfies | E(L)| = m.

Case 8. Suppose m = 5 (mod 6), n = 3 (mod 6), and m > n. As in Case
3 of Lemma 2.2, a packing with leave L satisfles |E(L)| > m + 4. Now
Kmn = (Knn \ M) U (Kponn \ M2) U M UM, where the partite sets of
Kpn \ My are {11,24,...,7} and V,,, M; is a perfect matching of K, ,,
the partite sets of K, n \ My are {{(n+ 1)1,(n+ 2)1,...,7m1} and V,,
and My is a set of m — n + 4 edges of Ky, n as described in Case 3 of
Lemma 2.2. Now K, ,, \ M7 can be decomposed into hexagons by Lemma
2.1 and Kpn_n,n \ M2 can be decomposed into hexagons by Lemma 2.2
Case 3. Therefore a maximal packing of K, , will have a leave L where
|E(L)| = |E(My)] + | E(M2)| = m + 4.

Case 9. Suppose m = 5 (mod 6), n = 5 (mod 6), and m > n. As in
Case 4 of Lemma 2.2, a packing with leave L satisfies | E(L)| > m+2. Now
Km,n = K4,n_5 U Kn—5,4 U (Kn—4,n—4 \ Ml) U (Km—n,n \ MZ) U3 x Cﬁ U
6 x Ky U My U M, where the partite sets of K4 4,5 are {11,2;, 31,41} and
Vn\ {12, 29,30, 49, 52}, the partite sets of K,,..5 4 are Vi, \ {11, 21, 31,41, 51}
and {1, 29, 33,42}, the partite sets of Ky—4,n,—4\Mj are {51,6y,...,n1} and
Vi \{12, 22, 32,42}, M1 is a perfect matching of K, _4 —4 which contains the
edge (51, ba), the partite sets of Kppy—n n \ Mz are {(n+1)1, (n+2)1,...,m1}
and V,,, My is a set of m — n edges as described in Case 1 of Lemms, 2.2,
3 x Cﬁ = {[11} 221 21: 327 511 42]: [311 22,91, 121 411 52]? [111 327 31, 421 21: 52]}?
and 6x = {(11: 12): (211 12): (31: 12)1 (411 22)1 (41: 32): (417 42)} Now K4,n—5
and K _54 can be decomposed into hexagons by Theorem 1.1, Kpap-a\
M7 can be decompased into hexagons by Lemma 2.1, and K,,,—p, , \ M2 can
be decomposed into hexagons by Lemma 2.2 Case 1. Therefore a maximal
packing of K., , will have a leave L where |E(L)| = |E(My)| + [E(M3)] +

|E(6 x Ko)| =m +2.
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Lemma 2.4 A mazimal hexagon packing of Ky, , where m and n are cven,
m,n > 4, has a leave L satisfying:

(1) |E(L)| = 0 when m =0 (mod 6),

(2) [E(L)| = 4 when m =n = 2 (mod 6) or m =n =4 (mod 6), and

(3) |E(L)| = 8 when m = 2 (mod 6) and n =4 (mod 6).

Proof. We consider cases.
Case 1. Suppose m = 0 (mod 6), n = 0 (mod 2), and n > 4. Then
K,nn can be decomposed into hexagons by Theorem 1.1 and in a maximal
packing, |E(L)| = 0. '
 Case 2. Suppose m = n = 2 (mod 6), m,n > 4, Now |E(K,, )| = 4 (mod
6), so it is necessary that a packing have leave L with [F(L)| > 4. Now
Knn = KimpegnUKgn_s U110 x Cg U Cy where the partite sets of Kp,—g,5
are {91,101,...,m1} and V,,, the partite sets of Kg g are {11,21,...,81}
and {921 1021 ey n2}g 10 % Cﬁ - {[21, 22: 41: 827 113 32]: [31: 32, 51, 125 21, 42]5
[41,42, 61,22, 31, 2], [B1, B2, 71, 32, 41, 62), {71, T2, 11, 52, 61, 82], [81, 82, 21, 62,
71, 1}, [81, 32, 61, 12, 41, 73], [61, 62, 11,42, 51, 72}, [11, 12, 31, 82, 51, 32, [21, 5,
81,62,31,72]}, and 04 = [71,22,81,42]. Now Km_g,n and Kg,n_.g can be
decomposed into hexagons by Theorem 1.1. Therefore a maximal packing
of Ky, will have a leave L where |E(L)| = |E(Cy)| = 4.
Case 3. Suppose m = n = 4 (mod 6), As in Case 2, a packing with
leave L satisfies |E(L)| > 4. Now Ky p, = Km—an U K4 s U2 x Cg U Cy
where the partite sets of K,,—4, are Vi, \ {11,21, 31,41} and V,,, the par-
tite sets of K4,n_4 are {11,21,31,41} and V,, \ {12,22,32,42}, 2 X Cﬁ =
{{11, 12, 21, 22, 31, 32], [41, 12, 31, 42, 21, 32], and 04 = [11, 22, 41, 42] Now
Ki—an and Ky 4 can be decomposed into hexagons by Theorem 1.1.
Therefore a maximal packing of K, ,, will have a leave L where |E(L)| =
[E(Cy4)| = 4.
Case 4. Suppose m = 2 (mod 6), m > 8, and n = 4 (mod 6). Now
| E(Km»)| = 2 (mod 6), so it is necessary that a packing have a leave L with
|E(L)| > 2. Now each vertex of K, ,, is of even degree and each vertex of Cy
is of even degree, so for any packing, the vertices of L must be of even degree.
However, we cannot have this property when |E(L)| = 2. So it is neces-
sary that a packing have a leave L with |E(L)| > 8. Now K = Kg naU
Kin—8,n U4 x CsU2x Cyq where the partite sets of Kg .4 are {11,2,...,8}
and V,\ {19, 22, 32,42}, the partite sets of Kyp,—g , are {91,10;,...,m1} and
Vo, 4xCg = {[11,12, 21, 22, 31, 33}, [41, 12, 31, 42, 21, 32], [61, 12,61, 22, 71, 32),
[81: 1o, 71: 42: 61, 32]}-3 and 2 x 04 = {[]—11 22, 41: 42]1 [227 51: 421 81]}° Now
Kgn-.4 and Kp,gn can be decomposed into hexagons by Theorem 1.1.
Therefore a maximal packing of K,,, will have a leave L where |E(L)] =

|E(2 x Ca)| = 8.
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Lemmas 2.2-2.4 combine to give our main result.

Theorem 2.1 A mazimal hexagon packing of Kn, n with leave L satisfies
(1) when m = 0 (mod 2) and n = 1 (mod 2), |E(L)| = m+k where k is the
smallest nonnegative integer such that |E(Kpmn) — (m + k) = 0 (mod 6),
(2) when m = n =1 (mod 2)and m > n, |E(L)] = m + k where k is the
smallest nonnegative integer such that |E(Kmn)| — (m + k) = 0 (mod 6),
(3) when m = 0 (mod 6) and n =0 (mod 2), |E(L)| =0,

(4) when m =n =2 (mod 6) or m =n = 4 (mod 6), then |E(L)| = 4, and
(5) when m = 2 (mod 6) and n = 4 (mod 6), then |E(L)|] = 8.
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