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1. Introduction

A g-decomposition of graph G is a set of subgraphs of G, v = {¢1,92,.- -, n },
where g; = g fori € {1,2,...,n}, E(g;) N E(g;) = 0 for ¢ # j, and UL, E(g;) =
E(G). The g; are called blocks of the decomposition. When G is a complete
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§Correspondence author



486 B. Coker, G.D. Coker, R. Gardner

graph, the g-decomposition is often called a graph design. The study of graph
designg and graph decompositions is a vibrant area of research [3, 4, 8]. Scveral
studies have centered on g-decompositions of complete graphs into copies of
a given graph g with a small number of vertices [1, 2, 5, 6, 7). This study
takes a slightly different approach and concentrates on g-decompositions of
different types of complete graphs for a given g. The ¢ which is the topic of
this study is the 4-cycle with a pendant edge. We denote this graph as H.
That is, V(H) = {a,b,¢,d, e} and E(H) = {(a,b), (b,¢),(c,d), (a,d), (a,e)}; we
represent this H as [a,b,¢,d;e]. See Figure 1.1. An H-decomposition of X,
exists if and only if v =0 or 1 (mod 5), v > 10 [1].

Figure 1.1: We denote this graph as H = [a,b,¢,d; ¢]

2. H-Decompositions of K,

We assume the partite sets of the complete bipartite graph, Ky, n, are V,, =
{04,1;,...,(m — 1)1} and V,, = {02,19,...,(n — Da}. -

Theorem 2.1. There is an H-decomposition of Ky ifand only ifmn = 0
(mod 5), m > 5, and n > 2,

Proof. Since |E(Ky, )| = mn, and H has 5 edges, mn = 0 (mod 5) is nec-
essary. Since H is bipartite with one partite vertex set consisting of 2 vertices,
hoth m and 7 must be at least 2.

Graph H is bipartite itself and each of its partite sets has a single vertex
of odd degree. If m = 3 and n = 5k then an H-decomposition of Ky, , would
require 3k copies of H. However, 3k copies of H can only produce a bipartite
graph with at most 3k odd degree vertices in each partite set. But if m = 5k
then one of the partite sets contains 5k vertices of odd degree. So no H-
decomposition of K, 5, exists when m = 3 and n = bk, Therefore m > 5.

Case 1. Suppose m = 0 (mod 2) and n = 0 (mod 5). Then an H-
decomposition of I(,, , is given by

{I(L+ 248}y, (57)2, (20, (1 + 57)2; (2 + 57)2], [(2)1, (3 + 5)a, (1 + 20)1, (4 + 5))a;
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(2+575)2]1i=0,1,...,m/2—1,5=0,1,...,n/5 — 1}.
Throughout, we reduce vertex labels by a modulus appropriate for the vertex
set we use.

Case 2. Suppose m = 1 (mod 2), m > 5, and n = 0 (mod 5). Then and
H-decomposition of K, ,, is given by

{[01: (57)2, 11, (1 + 55)2; (4 + 57)a), [31, (1 + 55)2, 41, (2 + 55)2; (54)a,

214 (2 4 57)2, 01, (3 + 57)2; (1 + 55)2], [L1, (8 + 55)2, 31, (4 + 55)2; (2 -+ 5)al,
[41, (B7)2, 21, (4 + 57)2; (3 + 55)2l, [(6 - 26)1, (57)2, (5 + 24)1, (14 55)2; (2 + 5j)a),
[(5 -+ 22)1, (3 + 55)2, (6 + 20)1, (4 + 55)2; (2 + 55)2] | i =0,1,...,(m —5)/2 ~ 1,

i=0,1,...,n/5—1}.

In both cases, the given set is a decomposition of Ky, ». 1

3. H-Decompositions of K{v,w)

‘The complete graph of order v with a hole of size w, K{v,w), is the graph
with vertex set V(K (v,w)) = Vy.y UV, where we assume these sets are
Vi = {01, 14,..., (v —w — 1)1} and V,, = {0y, 1,..., (w — 1)3}, and edge set
E(K(v,w)) = {(a,b) | a,b € V(K (v,w)) and {a,b} & V,,}.

Theorem 3.1. There is an H-decomposition of K(v,w) if and only if
[E(K(v,w))| =0 (inod 5), v —w > 4, and (v,w) ¢ {(5,1),(6,1)}.

Proof. Of course, |E(K (v,w))| = 0 (mod §) is necessary. If v —w = 1 then
K{v,w) is a star and there clearly is no H-decomposition. We cannot have
v —w = 2, since there is then no possible H a subgraph of K (v, w) which can
contain the edge (01, 1;).

Case 1a. Suppose (v(mod 5), w(mod 5)) € {(0,0),(1,0),(1,1),(2,2),(3,3),
{(4,4)} and v —w = 10. Now K (v,w) = Ky—gy U Ky.yp oy where the vertex set of
Koy w 18 Vi and the partite sets of K_y, ., are Vi_y and V. In cach case,
Ky can be decomposed [1] and K,y can be decomposed bv Theorem 2.1.
Therefore K (v, w) can be decomposed.

Case 1b. Suppose v = w = 0 (mod 5) and v — w = 5. A decomposition of
I{(].U, 5) is given by the set {{01, 21, 11,41‘, 12], [22,31, 21,41; 11], [11,02, 21, 12;01],
[32,31,02,41; 11], 42,31, 12,415 21}, [31, 11, 42, 01; 41], [01, 22, 21, 32; 0]}, If v =
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5+ 5k and w = bk, then K(v,w) = K(10,5) U (k ~ 1) x K55 where the
partife sets of the the ith copy of Ky 5 ave {01, 11,21, 31,41} and {(5-+54)y, (6
5i)2,...,(9+5i)a}. K(10,5) is decomposed above and Ky 5 can be decomposed
by Theorem 2.1,

Case lc. Suppose v = 1 (mod 5) and w = 0 (mod 5) and v — w = 6. A
decomposition of K(11,5) is given by the set [01, 02, 11, 12;31], [13, 22,01, 32; 41,
21,02, 81, 12;51], [31, 32,21, 22; 42], [41, 02, 51, 12; 4a], [51, 32, 41, 22; 43], [01, 11, 31,
41;42], [11,21,41,51;42],[21,31,51,01;42]}. Ifv =645k and w = 5k, then
K{v,w) = K(11,5) U (k — 1) x Kg5 where the partite sets of the ith copy of
Kgs are {04,14,21,34, 44, 51} and {(5 + 5i)a, (6 + 5i)a, ..., (94 5i)2}. K(11, 5)
is decomposed above and Kg s can be decomposed by Theorem 2.1.

Case 1d. Suppose v = w = 1 (mod 5) and v ~ w = 5. We know that
it v =6 and w = 1, then K(6,1) = K4 and no decomposition of Ky ex-
dsts [1]. First, K(11,6) = K(7,2) U K54 where the partite sets of K4 are
{01,1¢,...,44} and {24,34,45,55}. A decomposition of K(7,2) is given by the
seb {[41,11,21,31;02], [01, 11, 31, 095 13), [21, 02, 11, 125 04), [44, 12, 31,015 24]}, and
K54 can be decomposed by Theorem 2.1. If v = 6 -+ 5k and w = 1 + 5k, then
K(v,w) = K(11,6)U{k—1) x Ky 5 where the partite sets of the ith copy of K55
are {01, 11,21,31,41} and {(645i)y, (7+54)2,...,(10+5)2}. A decomposition
of K(11,8) is given above and K, 5,5 can be decomposed by Theorem 2.1.

Case le. Suppose v = w = 2 (mod 5) and v — w = 5. First, K(12,7) =
K (10,5)U K5 9 where the partite sets of K59 are {01,11,21,31,41} and {52, 62}.
K (10,5) can be decomposed by Case 1b and K54 can be decomposed by Theo-
vem 2.1, If v = 75k and w = 24 5k, then K (v,w) = K(12,7)U(k—1) x K35
where the partite sets of the the ith copy of Kss are {01,11,21,3;,41} and
{(7 4 5i)a, (8 + Hi)a, ..., (1L 4 5i)a}. K(12,5) can be decomposed as described
above and K55 can be decomposed by Theorem 2.1

Case 1f. Suppose v = w = 3 (mod 5) and v — w = 5. A decomposition of
I{(S, 3) is given by the set {[01, 12, 41,22; 31], [21, 02, 31, 12; 23], {01, 11, 31, 21; 02],
[41,11,25,31;01], [11,21,41,02; 15]}. H v = 8 + 5k and w = 3 + 5k, then
K{v,w) = K(8,3)U(k—1) x K55 where the partite sets of the ith copy of Kss
are {01,11,21,31,41} and {(3 + 5i)2, (4 -+ 5d)a, ..., (7T -+ 5i)2}. A decomposition
of K(8,3) is given above and K55 can be decomposed by Theorem 2.1,

Case 1g. Suppose v = w = 4 (mod 5) and v — w = 5. First, K(9,4) =
K(7,2) U K52 where the partite sets of Kp o are {04, 11, 21, 31,41} and {23,353},
K(7,2) can be decomposed by Case 1d and K(5,2) can be decomposed by
Theorem 2.1. If v = 9+5k and w = 41-5k, then K (v, w) = K(9,4)U(k—1)x K55
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where the partite sets of the the ith copy of Ky are {04,11,21,31,4;} and
{(4 + 50)2, (5 + 5i)a, ..., (8 + Bi)o}. K(9,4) can be decomposed as described
above and Ks s can be decomposed by Theorem 2.1.

Case 2. Suppose v = 0 (mod 5) and w = 1 (mod 5). First, K(5,1) = Kj
and no decomposition of Ky exists. A decomposition of K(10,6) is given by
{01, X2, 11,005 34], (31,02, 21, 15 11], [21, 22, 14, 82,3 31], [01, 32, 31, 22, 21, [11, 52, 31,
42;21),[01,52,21,42; 11]}. f v = w + 4 and w = 1 (mod 5), w > 11, then
K{v,w) = K(10,6) U Ky -6, where V(K (10,6)) = V,_,, U {03, 1,... , 5o}
and the hole is on vertex set {0q, 12,...,53}, and the partite sets of X, —w,w—6
are V,_,, and {6y, 79,. .., (w—1)3}. K(10,6) is decomposed above and Ky
can be decomposed by Theorem 2.1. For the other values of v and w in this case,
K(v,w) = Kyy11 U Ky w1 where the vertex set of Ky 1 is Vi U {02}
and the partite sets of Ky_y -1 are Vy_yy and Vi \ {02}, Ky_we1 can be
decomposed [1] and K,_,, 41 can be decomposed by Theorem 2.1.

Case 3. Suppose v = 2 (mod 5) and w = 4 (mod 5). First, if v — w = 3,
say w == 4 - bk and v = 7 + 5k, then K(v,w) has 15(k + 1} edges and an
H-decomposition of K(v,w) would consist of 3(k -+ 1) copies of H. Simi-
lar to the proof of the nonexistence of a decomposition of K. 35 in Theorem
2.1, such a decomposition would have at most 3(k + 1) odd degree vertices
in the hole, but each of the 4 + 5k vertices in the hole are of odd degree.
So no such decomposition exists. A decomposition of K(12,4) is given by
{(71,01,61, 135 51], [31, 41, 21, 515 11], [61, 21, T, 813 44), 01, 41, 11, 51; 24], [71, 41, 51,
61502}, [0, 11, 21, 31; 32)[12, 01, 02, 145 1], [O2, 21, 12, 313 64), [12, 41, 00,515 64], [22,
71,32,61;01], [32, 51, 22, 44; 11], [22, 31, 32, 21; 11]}. For the other values of v and w
in this case, K(v,w) = K(12,4)UK (v—8,w)UKg 4 where V(K (12,4)) =
{01, 44,...,71, 02,12,23,32) and the hole is on the vertex set {02,12,29,33},
V(K (v—8,w)) = Vy_ UV, \ {04,1y,...,71} and the hole is on the vertex set
Vi, and the partite sets of Kg,,_4 are {01,11,...,71} and V,, \ {0, 12,22,32}.
K(12,4) is decomposed above, K (v — 8,w) can be decomposed by Case 1, and
K34 can be decomposed by Theorem 2.1.

Case 4. Suppose v = 4 (mod 5) and w = 2 (mod 5). A decomposition
K (9,2) is given by {[02, 01,12, 11524}, [02, 31, 12, 41; 51], [51, 61,01, 215 14], [21, 11,
4y, 31, 61),[11, 34, 51,01;61], [61,4],01,31;02], [12,21,41,51;6;]}. For the other
values of v and w in this case, K(v,w) = K(9,2) U K(v —7,w) U K7, where
V(K(9,2)) = {04,11,...,61,02,12} and the hole is 6n the vertex set {0g,15},
V(K(v—T,w)) = V4 s UV,y \ {01,11,...6;} and the hole is on the vertex set
Vi, and the partite sets of K79 are {0;,1;,...,61} and V,,\ {0z, 15}. K(9,2)
is decomposed above, K(v — 7,w) can be decomposed by Case 1, and K7 4,2
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can be decomposed by Theorem 2.1. O

4, Decompositions of AK,

The A-fold complete graph, AK,,, is the multigraph with edge multiset E(AK,))
= {A X (a,b) | a # b and {a,b} C V(AI,)}.

Theorem 4.1. There is an H-decomposition of AK, if and only if
(a) v=0orl (mod?5) and v > 10 when A = 1, or
(b) A=0 (mod5) and v > 5.

Proof. Since |E(AK,)| = Av(v — 1)/2 and |E(H)| = 5, then a neces-
sary condition for an H-decomposition of AK, is that Av(v — 1)/2 = 0 (mod
5), and the necessary conditions follow. For v = 5 and A = 2, the set
{[0,2,3,4;1],(3,1,2,4;0],]2,0, 1, 4; 3], [1,3,0,4; 2]} forms a decomposition where
V(2K5) = {0,1,2,3,4}. For v =5 and X = 3, the set {[0,3,1,4;2],[1,2,3,4;0],
4,3,0,2;1],(2,4,0,1;3],[2,1, 3,0;4],[3,4,0,1;2]} forms a decomposition. For
v = 5 and A > 4, a decomposition follows by taking repeated copies of the
decompositions from the A = 2 and A = 3 cases. For v = 6 and A = 2, the set
{5, 144, 244,444;3+1] | i = 0,1,...,5} forms a decomposition where V (2Kg) =
{0,1,2,3,4,5}. For v = 6 and A\ = 3, the set {[5,2,4,3;1],[2,0,4,1;3],[0,2,5, 4;
3]& [2,1,5,3;4], [5,2,3,4;1], [2,0,3,1; 4], [1,4, 5,0;3], [0,1,4,3;5], [0,1,3,5; 4]}
forms a decomposition. For v == 6 and X\ > 4, a decomposition follows sim-
ilarly to the case of v = 5. For v = 0 or 1 (mod 5), v > 10, an H-decomposition
‘of K, exists, and hence an H-decomposition of MK, exists. For the remaining
values of v, we have XA = 0 (mod 5), so in these cases it is sufficient to present
the constructions for A = 5 only.

Case 1. Suppose v = 0 (mod 4), v > 8, say v = 4k and A = 5. For v = §,
consider the set By = {2 x [0,1, 3, 2;4], [00,0, 3,6;1],]0, 3, 00, 5; 1]}. For v > 12,
consider the set:

By = {[00,0,2k — 5,4k — 9;1], 0,2k — 3, 00,2k — 2; 2k — 1]}
U{2 x [0,1,3,2;2k — 1],2 % [0,3,7,4; 2k — 1]}
U{[0,5 + 2, 11 + 46,6 + 24,1 +4] | i =0,1,...,k — 4}
U{[0,5 + 2,11 + 44,6 + 2k —2414] | i =0,1,...,k — 4}.
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Define the permutation m on {0,1,2,...,v-2,00} as 7 = (00){0,1,2,-- ,v—2).
Then the set v = {#*([e, b,¢,d;¢]) | [, b,c.d;je] € By and 1 =0,1,...,0 — 2} is
an H-decomposition of AK, where V(AK,) = {0,1,2,...,v — 2,00}.
Case 2. Suppose v = 1 (mod 4), say v = 4k + 1 and A = 5. Consider the
set:
By={[0,1+2i,3+4i,2+2;1+4] |i=0,1,...,k—1}
U{[0,1 + 25,3 + 44,2+ 2k + 1+1] |4 =0,1,...,k— 1},
- Define the permutation p on {0,1,2,...,v—1} as p== (0,1,2,--- ,v—1). Then
the set v = {p*(|a,b,¢,d;€]) | [a,b,c,dye] € Ba and ¢ = 0,1,...,v — 1} is an
H-decomposition of MK, where V(AK,) ={0,1,2,...,v ~1}.
Case 3. Suppose v = 2 (mod 4), v > 10, say v = 4k+2 and A = 5. Consider
the set:
By = {[00,0, 2k, 4k; 1], 10, 2k, 00, 2k — 1;2k + 2]}
U{[0,1+ 24,3 + 44,24+ 28,1 +4] |1 =0,1,...,k—1}
U{[0, 1+ 26,3 + 46,2+ 2k + 1 +4] | i = 0,1,...,k —2}.
Then the set v = {n*([a,b,¢c,d;€]) | [a,b,c,d;e] € By and i =0,1,...,v—2} is
an H-decompaosition of MK, where V(AK,) == {0,1,2,...,v— 2,00}, where 7 is
defined in Case 1. '
Case 4. Suppose v = 3 (mod 4), say v = 4k +3 and A = 5. For v = 7,
consider the set By = {2 % [0,1,3,2;4],(0,3,6,2;1]}. For v > 11, consider the
set:

By ={2x[0,1,3,2;2k+1],2x [0,3,7,4; 2k + 1], [0, 2k — 3, 4k — 3, 2k — 2; 2k + 1]}

U{[0,5 + 24,11 + 46,6 + 2431 +4) |4 =0,1,...,k ~ 3}
U{[0,5 + 24,11 + 44,6 + 253k — 1 +4] | i == 0,1,...,k — 3).

Then the set v = {p*([a,b,¢,d;¢]) | [a,b,c,dye] € Byandi = 0,1,...,v — 1}
is an H-decomposition of AK, where V(AK,) = {0,1,2,...,v — 1}, where p is
defined in Case 2. 1
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