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We consider the packings and coverings of complete graphs with isomorphic copies of the 4-cycle with a pendant edge. Necessary
and sufficient conditions are given for such structures for (1) complete graphs 𝐾V, (2) complete bipartite graphs 𝐾

𝑚,𝑛
, and (3)

complete graphs with a hole 𝐾(V, 𝑤). In the last two cases, we address both restricted and unrestricted coverings.

1. Introduction, Motivation, and History

A 𝑔-decomposition of graph 𝐺 is a set of subgraphs of 𝐺, 𝛾 =

{𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
}, where 𝑔

𝑖
≅ 𝑔 for 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝐸(𝑔

𝑖
) ∩

𝐸(𝑔
𝑗
) = ⌀ for 𝑖 ̸= 𝑗, and ∪

𝑛

𝑖=1
𝐸(𝑔
𝑖
) = 𝐸(𝐺). The 𝑔

𝑖
are

called blocks of the decomposition. The concept of a graph
decomposition lies in the general area of the design theory.We
can relate a graph decomposition to an experimental design
by considering the following hypothetical situation: “suppose
you have a collection of V samples and you wish to compare
a property of the samples. However, the only way to compare
the samples is to run them three at a time in a machine which
performs the comparison. The machine cannot be calibrated
from run to run and so to compare two samples, wemust run
them together in the machine. When can all of the V samples
be optimally compared to each other by running themachine
(
V
2
) /3 times?” The solution to this question is equivalent to

finding a 𝐾
3
-decomposition of 𝐾V, where each vertex of 𝐾V

represents a sample, an edge joining two vertices represents a
comparison of the two corresponding samples, and a copy of
𝐾
3
represents a run of the machine. A 𝐾

3
-decomposition of

𝐾V exists if and only if V ≡ 1 or 3 (mod 6), and such a structure
is called a Steiner triple system [1].

In the event that a 𝑔-decomposition of 𝐺 does not exist,
we can still consider a set of isomorphic copies of graphs

𝑔 which “approximate” a decomposition. There are two
approaches to this. We describe the two approaches in terms
of the sample comparison analogy. In the first approach,
we can try comparing as many of the samples as possible,
without repetition of comparisons (it might be that running
themachine is expensive). In the settingmentioned above, we
could seek a collection of runs of the machine (represented
by copies of 𝐾

3
) which do not repeat pairs of samples run

together (i.e., the copies of 𝐾
3
are edge disjoint), and which

minimizes the number of pairs of samples which are omitted
(i.e., the cardinality of the set of edges in𝐾V which are in none
of the copies of 𝐾

3
is made minimal). Such an experimental

design is related to a maximal graph packing. A maximal 𝑔-
packing of a graph 𝐺 with isomorphic copies of a graph 𝑔 is a
set {𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
}, where 𝑔

𝑖
≅ 𝑔 and 𝑉(𝑔

𝑖
) ⊂ 𝑉(𝐺) for all 𝑖,

𝐸(𝑔
𝑖
) ∩𝐸(𝑔

𝑗
) = ⌀ for 𝑖 ̸= 𝑗, ∪𝑛

𝑖=1
𝑔
𝑖
⊂ 𝐺, and |𝐸(𝐺) \ ∪

𝑛

𝑖=1
𝐸(𝑔
𝑖
)|

isminimal. In particular, themachine analogy corresponds to
a 𝐾
3
-packing of 𝐾V. Such designs are explored in [2]. Other

packings of the complete graphs have also been studied, for
example, 4-cycle-packings [3], 𝐾

4
-packings [4], and 6-cycle-

packings [5, 6]. A second approach involves comparing 𝑎𝑙𝑙

of the samples to each other, but with minimal repetitions of
the compared samples (we might postulate that the machine
must have three samples in it during each run to keep it
balanced). This experimental design is related to a minimal
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Figure 1: We denote by 𝐻 = [𝑎, 𝑏, 𝑐, 𝑑; 𝑒] this graph.

graph covering. A minimal 𝑔-covering of a graph 𝐺 with
isomorphic copies of a graph 𝑔 is a set {𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
}, where

𝑔
𝑖
≅ 𝑔, 𝑉(𝑔

𝑖
) ⊂ 𝑉(𝐺), 𝐸(𝑔

𝑖
) ⊂ 𝐸(𝐺) for all 𝑖, 𝐺 ⊂ ∪

𝑛

𝑖=1
𝑔
𝑖
, and

|∪
𝑛

𝑖=1
𝐸(𝑔
𝑖
) \ 𝐸(𝐺)| is minimal (when considering coverings,

the graph ∪
𝑛

𝑖=1
𝑔
𝑖
may not be simple and ∪

𝑛

𝑖=1
𝐸(𝑔
𝑖
) may be

a multiset). The machine analogy in this case corresponds
to a 𝐾

3
-covering of 𝐾V. Such designs are explored in [7].

Coverings of 𝐾V have also been explored, for example, for 4-
cycles [2] and 6-cycles [8].

In terms of graph decompositions, several studies have
concentrated on the 𝑔-decompositions of complete graphs
into copies of a given graph 𝑔with a small number of vertices
[9–12]. In this paper, we go in a different direction and
consider a single graph 𝑔, the 4-cycle with a pendant edge,
and explore packings and coverings of several graphs related
to the complete graph. We denote the 4-cycle with a pendant
edge as 𝐻 = [𝑎, 𝑏, 𝑐, 𝑑; 𝑒], where 𝑉(𝐻) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and
𝐸(𝐻) = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑎, 𝑑), (𝑎, 𝑒)}. See Figure 1. An 𝐻-
decomposition of 𝐾V exists if and only if V ≡ 0 or 1 (mod 5),
V ≥ 10 [9]. An 𝐻-decomposition of the complete bipartite
graph, 𝐾

𝑚,𝑛
, exists if and only if 𝑚𝑛 ≡ 0 (mod 5), 𝑚 ≥ 5, and

𝑛 ≥ 2 [13]. Another graph related to the complete graph is
the complete graph with a hole 𝐾(V, 𝑤). The complete graph
on V vertices with a hole of size 𝑤 is the graph with a vertex
set 𝑉(𝐾(V, 𝑤)) = 𝑉V−𝑤 ∪ 𝑉

𝑤
, where |𝑉V−𝑤| = V − 𝑤 and

|𝑉
𝑤
| = 𝑤, and edge set 𝐸(𝐾(V, 𝑤)) = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈

𝑉(𝐾(V, 𝑤)), {𝑎, 𝑏} ̸⊂ 𝑉
𝑤
}. Necessary and sufficient conditions

for the decomposition of 𝐾(V, 𝑤) into 𝑚-cycles are known
for 𝑚 ∈ {3, 4, 5, 6, 7, 8, 10, 12, 14} [14–16]. There is an 𝐻-
decomposition of 𝐾(V, 𝑤) if and only if |𝐸(𝐾(V, 𝑤))| ≡ 0

(mod 5), V − 𝑤 ≥ 4, and (V, 𝑤) ∉ {(5, 1), (6, 1)} [13].
The graph𝐾(V, 𝑤) relates to the experimental design story

as follows. Suppose you have performed comparisons on a
collection of 𝑤 samples and then received an additional col-
lection of samples (say, V − 𝑤 new samples). You now wish
to compare the V − 𝑤 new samples to each other and to the
original 𝑤 samples. In the case of the machine described
above, this would correspond to a 𝐾

3
decomposition of

𝐾(V, 𝑤). In the event that a decomposition does not exist, we
can explore the packings and coverings of 𝐾(V, 𝑤). With a
maximal 𝑔-packing of 𝐺, we require that each copy of 𝑔 is
a subgraph of 𝐺. The definition given above for a maximal
𝑔-covering also involves the condition that each copy of 𝑔

is a subgraph of 𝐺. Most studies of coverings have involved
𝐺 = 𝐾V, so the condition that the copies of 𝑔 are subgraphs
of 𝐺 is trivially satisfied. But when 𝐺 is not a complete graph,

there is no obvious reason to impose the subgraph condition.
Returning to the testing-of-samples story, we see no reason to
disallow, for example, the testing (or retesting) of two samples
in the hole of 𝐾(V, 𝑤). Therefore, we are motivated to refine
the definition of a graph covering into two cases—one case
in which the edges that are not in 𝐺 are forbidden from use
in the copies of 𝑔 and a second case in which these edges are
not forbidden. A minimal unrestricted 𝑔-covering of a graph
𝐺 with isomorphic copies of a graph 𝑔 is a set {𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
}

where 𝑔
𝑖
≅ 𝑔, 𝑉(𝑔

𝑖
) ⊂ 𝑉(𝐺), 𝐺 ⊂ ∪

𝑛

𝑖=1
𝑔
𝑖
, and |∪

𝑛

𝑖=1
𝐸(𝑔
𝑖
) \ 𝐺|

is minimal (the graph ∪
𝑛

𝑖=1
𝑔
𝑖
may not be simple and ∪

𝑛

𝑖=1
𝐸(𝑔
𝑖
)

may be amultiset). A minimal restricted 𝑔-covering of a graph
𝐺with isomorphic copies of a graph 𝑔 is a set {𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
},

where 𝑔
𝑖
≅ 𝑔, 𝑉(𝑔

𝑖
) ⊂ 𝑉(𝐺), 𝐸(𝑔

𝑖
) ⊂ 𝐸(𝐺) for all 𝑖, 𝐺 ⊂

∪
𝑛

𝑖=1
𝑔
𝑖
, and |∪

𝑛

𝑖=1
𝐸(𝑔
𝑖
)\𝐺| isminimal.The distinction between

restricted and unrestricted coverings was introduced in [17].
Notice that in the event that 𝐺 is a complete graph, there
is no distinction between a minimal restricted and minimal
unrestricted covering.

The purpose of this paper is to give 𝐻-packings of 𝐾V,
𝐾
𝑚,𝑛

, and𝐾(V, 𝑤), as well as𝐻-coverings of𝐾V, and restricted
and unrestricted𝐻-coverings of 𝐾

𝑚,𝑛
and 𝐾(V, 𝑤).

2. Packing and Covering 𝐾V

In this section, when necessary, we assume that the vertex set
of𝐾V is𝑉(𝐾V) = {0, 1, 2, . . . , V− 1}. Since𝐻 has 5 vertices, we
only consider V ≥ 5.

Theorem 1. A maximal 𝐻-packing of 𝐾V, V ≥ 5, has leave
𝐿, where |𝐸(𝐿)| = |𝐸(𝐾V)|(mod 5), except when V ∈ {5, 6} in
which case |𝐸(𝐿)| = 5.

Proof. Since |𝐸(𝐻)| = 5, then it is necessary that in any
𝐻-packing of 𝐾V with leave 𝐿, |𝐸(𝐿)| ≡ |𝐸(𝐾V)| (mod 5).
Therefore, such a packing with |𝐸(𝐿)| = |𝐸(𝐾V)| (mod 5)
would bemaximal. If V ∈ {5, 6}, then |𝐸(𝐾V)| ≡ 0 (mod 5), but
there is not an 𝐻-decomposition of 𝐾V [9]. So for V ∈ {5, 6},
an 𝐻-packing of 𝐾V with leave 𝐿, where |𝐸(𝐿)| = 5 would be
maximal.

Case 1. Suppose V = 5. The set {[0, 1, 2, 3; 4]} is a maximal
packing of𝐾

5
with leave 𝐿, where 𝐸(𝐿) = {(0, 2), (1, 3), (1, 4),

(2, 4), (3, 4)}, so |𝐸(𝐿)| = 5.

Case 2. Suppose V = 6. The set {[0, 1, 2, 3; 4], [1, 3, 4, 5; 4]} is a
maximal packing of𝐾

6
with leave 𝐿, where 𝐸(𝐿) = {(0, 2), (0,

5), (2, 5), (2, 4), (3, 5)}, so |𝐸(𝐿)| = 5.

Case 3. Suppose V ≡ 2 or 4 (mod 5), V ≥ 9. Since |𝐸(𝐾V)| ≡ 1

(mod 5), |𝐸(𝐿)| = 1 would be optimal. Now 𝐾(V, 2) can be
decomposed [13], so |𝐸(𝐿)| = 1.

Case 4. Suppose V ≡ 3 (mod 5), V ≥ 8. Since |𝐸(𝐾V)| ≡ 3

(mod 5), |𝐸(𝐿)| = 3 would be optimal. Now 𝐾(V, 3) can be
decomposed [13], so |𝐸(𝐿)| = 3.

In the following result (and throughout this paper), we
refer to an equality of the form 𝑎 = 𝑏 (mod 𝑐). By this, we
mean that 𝑎 ∈ {0, 1, 2, . . . , 𝑐 − 1} and 𝑎 ≡ 𝑏 (mod 𝑐).
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Theorem 2. A minimal 𝐻-covering of 𝐾V, V ≥ 5, has padding
𝑃, where |𝐸(𝑃)| = −|𝐸(𝐾V)|(mod 5), except when V ∈ {5, 6} in
which case |𝐸(𝑃)| = 5.

Proof. Since |𝐸(𝐻)| = 5, then it is necessary that in any 𝐻-
covering of 𝐾V with padding 𝑃, we have |𝐸(𝐾

𝑛
)| + |𝐸(𝑃)| ≡ 0

(mod 5) or that |𝐸(𝑃)| ≡ −|𝐸(𝐾V)| (mod 5). So if |𝐸(𝑃)| =

−|𝐸(𝐾V)| (mod 5), then the covering is minimal. If V ∈ {5, 6},
then −|𝐸(𝐾V)| ≡ 0 (mod 5), but there is no𝐻-decomposition
of𝐾V [9]. So for V ∈ {5, 6}, an𝐻-covering of𝐾V with padding
𝑃, where |𝐸(𝑃)| = 5 would be minimal.

Case 1. Suppose V = 5.The set {[0, 1, 2, 3; 4], [1, 2, 0, 4; 3], [4, 1,
0, 2; 3]} is a minimal covering of 𝐾

5
with padding 𝑃, where

(𝑃) = {(0, 1), (0, 2), (0, 4), (1, 2), (1, 4)}, so |𝐸(𝑃)| = 5.

Case 2. Suppose V = 6. The set {[0, 1, 2, 3; 4], [5, 0, 2, 4; 1], [5,
3, 4, 1; 2], [3, 4, 5, 2; 1]} is a minimal covering of 𝐾

6
with

padding 𝑃, where 𝐸(𝑃) = {(1, 5), (2, 3), (2, 5), (3, 4), (4, 5)}, so
|𝐸(𝑃)| = 5.

Case 3. Suppose V ≡ 2 or 4 (mod 5), V ≥ 7. There is an 𝐻-
decomposition of 𝐾(V, 2) [13]. Take such a decomposition,
along with another copy of 𝐻 which includes the edge of the
hole of 𝐾(V, 2). This gives a covering of 𝐾V with padding 𝑃,
where |𝐸(𝑃)| = 4 = −|𝐸(𝐾V)| (mod 5).

Case 4. Suppose V ≡ 3 (mod 5), V ≥ 8. An 𝐻-covering of
𝐾
8
is given by {[0, 1, 2, 7; 3], [1, 3, 5, 7; 6], [4, 5, 6, 3; 7], [2, 4, 6,

0; 5], [1, 4, 0, 5; 2], [7, 3, 2, 6; 0]}with padding𝑃, where𝐸(𝑃) =

{(0,7), (1, 2)} and the covering is optimal. For V ≥ 13, 𝐾V =

𝐾(V, 8) ∪ 𝐾
8
, 𝐾(V, 8) can be decomposed [13], and 𝐾

8
can be

covered with padding 𝑃, where |𝐸(𝑃)| = 2. Therefore, there is
an optimal𝐻-covering of𝐾V with padding 𝑃, where |𝐸(𝑃)| =

2 = −|𝐸(𝐾V)| (mod 5).

3. Packing and Covering the Complete
Bipartite Graph

In this section, we consider the𝐻-packings and𝐻-coverings
of the complete bipartite graph 𝐾

𝑚,𝑛
. We assume the partite

sets of𝐾
𝑚,𝑛

are {0
0
, 1
0
, . . . , (𝑚−1)

0
} and {0

1
, 1
1
, . . . , (𝑛 − 1)

1
}.

Theorem 3. Amaximal𝐻-packing of𝐾
𝑚,𝑛

has leave 𝐿, where

(1) |𝐸(𝐿)| = 𝑚𝑛 if 𝑚 = 1 or 𝑛 = 1, or if 𝑚 = 𝑛 = 2, or

(2) |𝐸(𝐿)| = |𝐸(𝐾
𝑚,𝑛

)|(mod 5), otherwise.

Proof. First, if 𝑚 or 𝑛 equals 1, then 𝐻 is not a subgraph of
𝐾
𝑚,𝑛

, and the leave must have 𝑚𝑛 edges. Similarly, the leave
of a packing of 𝐾

2,2
has 𝑚𝑛 = 4 edges. For 𝑚 ≥ 2 and

𝑛 ≥ 3, as in the proof of Theorem 1, an 𝐻-packing of 𝐾
𝑚,𝑛

with leave 𝐿, where |𝐸(𝐿)| = |𝐸(𝐾
𝑚,𝑛

)| (mod 5) would be
maximal. Next, for 𝑚 ≥ 2 and 𝑛 ≥ 3 we observe that
if there is a packing of 𝐾

𝑚,𝑛
with leave 𝐿, then there is a

packing of 𝐾
𝑚+5𝑖,𝑛+5𝑗

with leave 𝐿 for all 𝑖, 𝑗 ∈ N. This is
because 𝐾

𝑚+5𝑖,𝑛+5𝑗
= 𝐾
𝑚,𝑛

∪ 𝐾
𝑚,5𝑗

∪ 𝐾
5𝑖,𝑛

∪ 𝐾
5𝑖,5𝑗

, where
the partite sets of 𝐾

𝑚+5𝑖,𝑛+5𝑗
are {0

0
, 1
0
, . . . , (𝑚 − 1 + 5𝑖)

0
}

and {0
1
, 1
1
, . . . , (𝑛 − 1 + 5𝑗)

1
}, the partite sets of 𝐾

𝑚,𝑛
are

{0
0
, 1
0
, . . . , (𝑚 − 1)

0
} and {0

1
, 1
1
, . . . , (𝑛 − 1)

1
}, the partite sets

of𝐾
𝑚,5𝑗

are {0
0
, 1
0
, . . . , (𝑚−1)

0
} and {𝑛

1
, (𝑛+1)

1
, . . . , (𝑛−1+

5𝑗)
1
}, the partite sets of𝐾

5𝑖,𝑛
are {𝑚

0
, (𝑚+1)

0
, . . . , (𝑚−1+5𝑖)

0
}

and {0
1
, 1
1
, . . . , (𝑛 − 1)

1
}, and the partite sets of 𝐾

5𝑖,5𝑗
are

{𝑚
0
, (𝑚 + 1)

0
, . . . , (𝑚 − 1 + 5𝑖)

0
} and {𝑛

1
, (𝑛 + 1)

1
, . . . , (𝑛 −

1 + 5𝑗)
1
}. There is an 𝐻-decomposition of 𝐾

𝑚,5𝑗
, 𝐾
5𝑖,𝑛

, and
𝐾
5𝑖,5𝑗

[13].
In Table 1, the packings, combined with the decomposi-

tions of complete bipartite graphs mentioned above, yield the
result.

Theorem 4. A minimal restricted 𝐻-covering of 𝐾
𝑚,𝑛

, where
neither𝑚 nor 𝑛 equals 1 and𝑚 + 𝑛 ≥ 5, has padding 𝑃, where
|𝐸(𝑃)| = −|𝐸(𝐾

𝑚,𝑛
)|(mod 5).

Proof. For 𝐾
1,𝑛
, 𝐻 is not a subgraph and so a restricted

𝐻-covering does not exist. Similar to the argument in
Theorem 2, a 𝐻-covering of 𝐾

𝑚,𝑛
with padding 𝑃 where

|𝐸(𝑃)| = −|𝐸(𝐾
𝑚,𝑛

)| (mod 5) would be minimal. As in
Theorem 3, for 𝑚 ≥ 2 and 𝑚 ≥ 3, if there is a restricted
covering of 𝐾

𝑚,𝑛
with padding 𝑃, then there is a restricted

covering of 𝐾
𝑚+5𝑖,𝑛+5𝑗

with padding 𝑃 for all 𝑖, 𝑗 ∈ N.
In Table 2, the coverings, combined with the decomposi-

tions of complete graphs mentioned in Theorem 3, yield the
result.

Theorem 5. A minimal unrestricted 𝐻-covering of 𝐾
𝑚,𝑛

has
padding 𝑃 where

(1) when 𝑚 > 1 and 𝑛 > 1, |𝐸(𝑃)| = −|𝐸(𝐾
𝑚,𝑛

)|(mod 5),
(2) when 𝑚 = 1, |𝐸(𝑃)| = (2/3)𝑛 for 𝑛 ≡ 0 (mod3),

|𝐸(𝑃)| = 2(𝑛 + 5)/3 for 𝑛 ≡ 1 (mod 3), |𝐸(𝑃)| = (2𝑛+

5)/3 for 𝑛 ≡ 2 (mod 3).

Proof. For 𝑚 > 1 and 𝑛 > 1, the necessary condition follows
as in the proof of Theorem 4. In this case, sufficiency also
follows fromTheorem 4.

When 𝑚 = 1, a copy of 𝐻 where 𝑉(𝐻) ⊂ 𝑉(𝐾
1,𝑛

) has at
most 3 edges in 𝐸(𝐾

1,𝑛
) and at least 2 edges in the padding.

So in an 𝐻-covering of 𝐾
1,𝑛
, there are at least ⌈𝑛/3⌉ copies

of 𝐻. Now ⌊𝑛/3⌋ copies of 𝐻 can have at most 3⌊𝑛/3⌋ edges
in 𝐸(𝐾

1,𝑛
) and at least 2⌊𝑛/3⌋ edges in the padding. If 𝑛 ≡ 1

(mod 3), then to completely cover𝐾
1,𝑛

wemust add onemore
copy of 𝐻 which has at most 1 edge in 𝐸(𝐾

1,𝑛
) and at least 4

edges in the padding. If 𝑛 ≡ 2 (mod 3), then to completely
cover𝐾

1,𝑛
wemust add onemore copy of𝐻which has atmost

2 edges in 𝐸(𝐾
1,𝑛

) and at least 3 edges in the padding. This
yields the necessary conditions for 𝑚 = 1. We now establish
sufficiency for 𝑚 = 1.

Case 1. Suppose 𝑚 = 1 and 𝑛 ≡ 0 (mod 3); 𝑛 ≥ 6. Consider
the blocks {[0

0
, 0
1
, 3
1
, 1
1
; 2
1
]} ∪ {[0

0
, (3𝑘)
1
, 2
1
, (3𝑘 + 1)

1
; (3𝑘 +

2)
1
] | 𝑘 = 1, 2, . . . , (𝑛/3) − 1}. This is a covering of 𝐾

𝑚,𝑛
with

padding 𝑃 = {(0
1
, 3
1
), (1
1
, 3
1
)} ∪ {(2

1
, (3𝑘)
1
), (2
1
, (3𝑘 + 1)

1
) |

𝑘 = 1, 2, . . . , (𝑛/3) − 1}, where |𝐸(𝑃)| = (2/3)𝑛.

Case 2. Suppose 𝑚 = 1 and 𝑛 ≡ 1 (mod 3); 𝑛 ≥ 4. From Case
1, there is a covering of𝐾

1,𝑛−1
, where the partite sets of𝐾

1,𝑛−1
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Table 1

(𝑚, 𝑛) (mod 5) 𝐾
𝑚,𝑛

Packing Leave

(1, 1) 𝐾
6,6

{[0
0
, 0
1
, 1
0
, 1
1
; 2
1
], [0
0
, 5
1
, 1
0
, 4
1
; 3
1
], [2
0
, 0
1
, 3
0
, 1
1
; 2
1
],

{(5
0
, 3
1
)}[2

0
, 4
1
, 3
0
, 5
1
; 3
1
], [4
0
, 0
1
, 5
0
, 1
1
; 2
1
], [4
0
, 4
1
, 5
0
, 5
1
; 3
1
],

[2
1
, 1
0
, 3
1
, 3
0
; 5
0
]}

(1, 2) 𝐾
6,2

{[0
1
, 0
0
, 1
1
, 1
0
; 2
0
], [1
1
, 5
0
, 0
1
, 4
0
; 3
0
]} {(2

0
, 1
1
), (3
0
, 0
1
)}

(1, 3) 𝐾
6,3

{[3
0
, 0
1
, 2
0
, 1
1
; 2
1
], [1
0
, 0
1
, 0
0
, 1
1
; 2
1
], [5
0
, 0
1
, 4
0
, 1
1
; 2
1
]} {(0

0
, 2
1
), (2
0
, 2
1
), (4
0
, 2
1
)}

(1, 4) 𝐾
6,4

{[0
0
, 0
1
, 1
0
, 1
1
; 2
1
], [3
1
, 2
0
, 2
1
, 3
0
; 1
0
], {(2

0
, 0
1
), (2
0
, 1
1
),

[2
1
, 4
0
, 1
1
, 5
0
; 1
0
], [3
1
, 4
0
, 0
1
, 5
0
; 0
0
]} (3

0
, 0
1
), (3
0
, 1
1
)}

(2, 2) 𝐾
2,2

⌀
{(0
0
, 0
1
), (0
0
, 1
1
),

(1
0
, 0
1
), (1
0
, 1
1
)}

(2, 3) 𝐾
3,2

{[1
1
, 1
0
, 0
1
, 0
0
; 2
0
]} {(2

0
, 0
1
)}

(2, 4) 𝐾
4,2

{[1
1
, 1
0
, 0
1
, 0
0
; 2
0
]} {(2

0
, 0
1
), (3
0
, 0
1
), (3
0
, 1
1
)}

(3, 3) 𝐾
3,3

{[1
1
, 1
0
, 0
1
, 0
0
; 2
0
]}

{(0
0
, 2
1
), (1
0
, 2
1
),

(2
0
, 0
1
), (2
0
, 2
1
)}

(3, 4) 𝐾
4,3

{[0
0
, 0
1
, 1
0
, 1
1
; 2
1
], [2
0
, 3
1
, 1
0
, 2
1
; 1
1
]} {(0

0
, 3
1
), (2
0
, 0
1
)}

(4, 4) 𝐾
4,4

{[1
0
, 1
1
, 0
0
, 0
1
; 2
1
] , [3
0
, 1
1
, 2
0
, 0
1
; 2
1
], [3
1
, 2
0
, 2
1
, 0
0
; 3
0
]} {(1

0
, 3
1
)}

Table 2

(𝑚, 𝑛) (mod 5) 𝐾
𝑚,𝑛

Covering Padding
(1, 1) 𝐾

6,6
{[3
1
, 0
0
, 0
1
, 1
0
; 5
0
]} {(0

0
, 3
1
), (0
0
, 0
1
), (1
0
, 0
1
), (1
0
, 3
1
)}

(1, 2) 𝐾
6,2

{[0
1
, 2
0
, 1
1
, 1
0
; 3
0
]} {(1

0
, 0
1
), (1
0
, 1
1
), (2
0
, 0
1
)}

(1, 3) 𝐾
6,3

{[2
1
, 0
0
, 1
1
, 2
0
; 4
0
]} {(0

0
, 1
1
), (2
0
, 1
1
)}

(1, 4) 𝐾
6,4

{[2
0
, 0
1
, 3
0
, 1
1
; 2
1
]} {(2

0
, 2
1
)}

(2, 2) 𝐾
7,2

{[0
1
, 0
0
, 1
1
, 1
0
; 6
0
] , [1
1
, 2
0
, 0
1
, 3
0
; 6
0
], [1
1
, 5
0
, 0
1
, 4
0
; 0
0
]} {(0

0
, 1
1
)}

(2, 3) 𝐾
3,2

{[0
1
, 1
0
, 1
1
, 0
0
; 2
0
]} {(0

0
, 0
1
), (0
0
, 1
1
), (1
0
, 0
1
), (1
0
, 1
1
)}

(2, 4) 𝐾
4,2

{[0
1
, 3
0
, 1
1
, 0
0
; 2
0
]} {(0

0
, 0
1
), (0
0
, 1
1
)}

(3, 3) 𝐾
3,3

{[2
1
, 2
0
, 0
1
, 1
0
; 0
0
]} {(1

0
, 0
1
)}

(3, 4) 𝐾
4,3

{[0
1
, 0
0
, 3
1
, 2
0
; 1
0
]} {(0

0
, 0
1
), (1
0
, 0
1
), (2
0
, 3
1
)}

(4, 4) 𝐾
4,4

{[3
1
, 0
0
, 0
1
, 3
0
; 1
0
]} {(0

0
, 3
1
), (0
0
, 0
1
), (3
0
, 0
1
), (3
0
, 3
1
)}

are {0
0
}, and 𝑉

𝑛
\ {(𝑛 − 1)

1
} with padding 𝑃

1
, where |𝐸(𝑃

1
)| =

2(𝑛 − 1)/3. This covering along with {[0
0
, 0
1
, 2
1
, 1
1
; 3
1
]}, is

an unrestricted covering of 𝐾
𝑚,𝑛

with padding 𝑃
2

= 𝑃
1
∪

{(0
0
, 0
1
), (0
1
, 2
1
), (2
1
, 1
1
), (0
0
, 1
1
)} and so |𝐸(𝑃

2
)| = 2(𝑛+5)/3.

Case 3. Suppose𝑚 = 1 and 𝑛 ≡ 2 (mod 3); 𝑛 ≥ 5. FromCase 1,
there is a covering of𝐾

1,𝑛−2
, where the partite sets of𝐾

1,𝑛−2
are

{0
0
} and𝑉

𝑛
\{(𝑛−2)

1
}with padding 𝑃

1
, where |𝐸(𝑃

1
)| = 2(𝑛−

2)/3. This covering along with {[0
0
, (𝑛 − 1)

1
, 0
1
, (𝑛 − 2)

1
; 1
1
]}

is an unrestricted covering of 𝐾
𝑚,𝑛

with padding 𝑃
2

= 𝑃
1
∪

{(0
1
, (𝑛 − 1)

1
), (0
1
, (𝑛 − 2)

1
), (0
0
, 1
1
)}, and so |𝐸(𝑃

2
)| = (2𝑛 +

5)/3.

4. Packing the Complete Graph with a Hole

In this section, we assume the vertex set of 𝐾(V, 𝑤) is
𝑉(𝐾(V, 𝑤)) = 𝑉V−𝑤 ∪ 𝑉

𝑤
as described in Section 1, where

𝑉V−𝑤 = {0
0
, 1
0
, . . . , (V−𝑤−1)

0
} and𝑉

𝑤
= {0
1
, 1
1
, . . . , (𝑤−1)

1
}.

Theorem 6. A maximal 𝐻-packing of 𝐾(V, 𝑤) has leave 𝐿,
where |𝐸(𝐿)| = |𝐸(𝐾(V,𝑤))|(mod5) and V − 𝑤 ≥ 2 is
necessary.

Proof. When V = 𝑤 + 1, 𝐻 is not a subgraph of 𝐾(V, 𝑤), and
so, there is no packing. Therefore, V − 𝑤 ≥ 2 is necessary for
the existence of a packing.

Case 1. If V − 𝑤 = 6, then 𝐾(V, 𝑤) = 𝐾
6
∪ 𝐾
6,𝑤

, where
the vertex set of 𝐾

6
is 𝑉V−𝑤 and the partite sets of 𝐾

6,𝑤

are 𝑉V−𝑤 and 𝑉
𝑤
. There exists a packing 𝐾

6,𝑤
with leave 𝐿

2

such that |𝐸(𝐿
2
)| ∈ {1, 2, 3, 4}. Without loss of generality,

(0
0
, 0
1
) ∈ 𝐸(𝐿

2
). Take such a packing along with {[4

0
, 5
0
,

2
0
, 3
0
; 1
0
], [0
0
, 3
0
, 1
0
, 5
0
; 2
0
], [0
0
, 1
0
, 2
0
, 4
0
; 0
1
]}. This yields a

packing of𝐾(V, 𝑤)with leave 𝐿 = {(3
0
, 5
0
)}∪𝐸(𝐿

2
)\{(0
0
, 0
1
)},

so |𝐸(𝐿)| = |𝐸(𝐿
2
)|.

Case 2. Suppose V ≡ 0 (mod 5) and 𝑤 ≡ 2 (mod 5). Then
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, where 𝑉(𝐾V−𝑤) = 𝑉V−𝑤 and the
partite sets of 𝐾V−𝑤,𝑤 are 𝑉V−𝑤 and 𝑉

𝑤
. We have V − 𝑤 ≡ 3

(mod 5) and 𝑤 ≡ 2 (mod 5). There is a maximal packing of
𝐾V−𝑤, where V−𝑤 ≡ 3 (mod 5) with |𝐸(𝐿

1
)| = 3 byTheorem 1

and a maximal packing of 𝐾V−𝑤,𝑤 with |𝐸(𝐿
2
)| = 1 by

Theorem 3. Therefore, there is a maximal packing of 𝐾(V, 𝑤)

with leave 𝐿, where |𝐸(𝐿)| = 4 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 3. Suppose V ≡ 0 (mod 5) and 𝑤 ≡ 3 (mod 5) or V ≡ 3

(mod 5) and 𝑤 ≡ 4 (mod 5). Then 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤
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as in Case 2, where V − 𝑤 ≡ 2 (mod 5) and 𝑤 ≡ 3 (mod 5)
or V − 𝑤 ≡ 4 (mod 5) and 𝑤 ≡ 4 (mod 5). There is a maximal
packing of𝐾V−𝑤, where V−𝑤 ≡ 2 (mod 5) or V−𝑤 ≡ 4 (mod 5)
with |𝐸(𝐿

1
)| = 1 by Theorem 1, and there is a maximal

packing of 𝐾V−𝑤,𝑤 with |𝐸(𝐿
2
)| = 1 by Theorem 3. Therefore,

there is a maximal packing of 𝐾(V, 𝑤) with leave 𝐿, where
|𝐸(𝐿)| = 2 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 4. Suppose V ≡ 0 (mod 5) and 𝑤 ≡ 4 (mod 5). When
V − 𝑤 ≥ 11, 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where
V − 𝑤 ≡ 1 (mod 5) and 𝑤 ≡ 4 (mod 5). There is a maximal
packing of 𝐾V−𝑤,𝑤 with |𝐸(𝐿

2
)| = 4 by Theorem 3 and 𝐾V−𝑤,

where V−𝑤 ≡ 1 (mod 5) is decomposable [9].Therefore, there
is a maximal packing of 𝐾(V, 𝑤) with leave 𝐿, where |𝐸(𝐿)| =

4 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 5. Suppose V ≡ 1 (mod 5) and 𝑤 ≡ 2 (mod 5) or V ≡ 1

(mod 5) and 𝑤 ≡ 4 (mod 5). Then 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤,
as in Case 2, where V − 𝑤 ≡ 4 (mod 5) and 𝑤 ≡ 2 (mod 5),
or V − 𝑤 ≡ 2 (mod 5) and 𝑤 ≡ 4 (mod 5). There is a maximal
packing of𝐾V−𝑤, where V−𝑤 ≡ 4 (mod 5) or V−𝑤 ≡ 2 (mod 5)
with |𝐸(𝐿

1
)| = 1 byTheorem 1, and there is a maximal pack-

ing of𝐾V−𝑤,𝑤 with |𝐸(𝐿
2
)| = 3 byTheorem 3.Therefore, there

is a maximal packing of 𝐾(V, 𝑤) with leave 𝐿, where |𝐸(𝐿)| =

4 = |𝐸(𝐾(V, 𝑤))|(mod 5).

Case 6. Suppose V ≡ 1 (mod 5) and 𝑤 ≡ 3 (mod 5). Then
𝐾(V, 𝑤) = 𝐾V−𝑤+1 ∪𝐾V−𝑤,𝑤−1, where𝑉(𝐾V−𝑤+1) = 𝑉V−𝑤 ∪{𝑤

1
}

and the partite sets of𝐾V−𝑤,𝑤−1 are𝑉V−𝑤 ∪ {𝑤
1
} and𝑉

𝑤
\ {𝑤
1
}.

Then there is a maximal packing of 𝐾V−𝑤+1 with leave 𝐿
1
,

where |𝐸(𝐿
1
)| = 1 by Theorem 1, and there is a maximal

packing of 𝐾V−𝑤,𝑤−1 with leave 𝐿
2
, where |𝐸(𝐿

2
)| = 1 by

Theorem 3. Therefore, there is a maximal packing of 𝐾(V, 𝑤)

with leave 𝐿, where |𝐸(𝐿)| = 2 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 7. Suppose V ≡ 2 (mod 5) and 𝑤 ≡ 0 (mod 5) or V ≡ 4

(mod 5), and 𝑤 ≡ 0 (mod 5). Then 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤
where V − 𝑤 ≡ 2 (mod 5) and 𝑤 ≡ 0 (mod 5) or V − 𝑤 ≡ 4

(mod 5), and 𝑤 ≡ 0 (mod 5). There is a maximal packing of
𝐾V−𝑤, where V − 𝑤 ≡ 2 (mod 5) or V − 𝑤 ≡ 4 (mod 5) with
|𝐸(𝐿
1
)| = 1 by Theorem 1 and 𝐾V−𝑤,𝑤 is decomposable [13].

Therefore, there is a maximal packing of𝐾(V, 𝑤) with leave 𝐿

where |𝐸(𝐿)| = 1 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 8. Suppose V ≡ 2 (mod 5) and 𝑤 ≡ 1 (mod 5). Similar to
Case 3, when V−𝑤 ≥ 11,𝐾(V, 𝑤) = 𝐾V−𝑤 ∪𝐾V−𝑤,𝑤, as in Case
2, where V − 𝑤 ≡ 1 (mod 5) and 𝑤 ≡ 1 (mod 5). There is a
maximal packing of 𝐾V−𝑤,𝑤 with |𝐸(𝐿

2
)| = 1 by Theorem 3

and 𝐾V−𝑤, where V − 𝑤 ≡ 1 (mod 5) is decomposable [9].
Therefore, there is a maximal packing of 𝐾(V, 𝑤) with leave
𝐿, where |𝐸(𝐿)| = 1 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 9. Suppose V ≡ 2 (mod 5) and 𝑤 ≡ 3 (mod 5), or V ≡ 3

(mod 5) and𝑤 ≡ 1 (mod 5).Then𝐾(V, 𝑤) = 𝐾V−𝑤∪𝐾V−𝑤,𝑤, as
in Case 2, where V−𝑤 ≡ 4 (mod 5),𝑤 ≡ 3 (mod 5) or V−𝑤 ≡ 2

(mod 5) and 𝑤 ≡ 1 (mod 5). There is a maximal packing of
𝐾V−𝑤, where V − 𝑤 ≡ 4 (mod 5) or V − 𝑤 ≡ 2 (mod 5) with
|𝐸(𝐿
1
)| = 1 by Theorem 1, and there is a maximal packing of

𝐾V−𝑤,𝑤 with |𝐸(𝐿
2
)| = 2 by Theorem 3. Therefore, there is a

maximal packing of𝐾(V, 𝑤) with leave 𝐿, where |𝐸(𝐿)| = 3 =

|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 10. Suppose V ≡ 3 (mod 5) and 𝑤 ≡ 0 (mod 5). Then
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 3

(mod 5) and 𝑤 ≡ 0 (mod 5). There is a maximal packing
of 𝐾V−𝑤, where V − 𝑤 ≡ 3 (mod 5) with |𝐸(𝐿

1
)| = 3 by

Theorem 1 and 𝐾V−𝑤,𝑤 is decomposable [13]. Therefore, there
is a maximal packing of 𝐾(V, 𝑤) with leave 𝐿, where |𝐸(𝐿)| =

3 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 11. Suppose V ≡ 3 (mod 5) and 𝑤 ≡ 2 (mod 5). Similar
to Case 4, when V − 𝑤 ≥ 11, 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, where
V − 𝑤 ≡ 1 (mod 5) and 𝑤 ≡ 2 (mod 5). There is a maximal
packing of 𝐾V−𝑤,𝑤 with |𝐸(𝐿

2
)| = 2 by Theorem 3 and 𝐾V−𝑤

where V−𝑤 ≡ 1 (mod 5) is decomposable [9].Therefore, there
is a maximal packing of 𝐾(V, 𝑤) with leave 𝐿, where |𝐸(𝐿)| =

2 = |𝐸(𝐾(V, 𝑤))| (mod 5).

Case 12. Suppose V ≡ 4 (mod 5) and 𝑤 ≡ 1 (mod 5). As in
Case 6, we have𝐾(V, 𝑤) = 𝐾V−𝑤+1 ∪ 𝐾V−𝑤,𝑤−1. Then there is a
maximal packing of 𝐾V−𝑤+1 with leave 𝐿

1
, where |𝐸(𝐿

1
)| = 1

by Theorem 1 and 𝐾V−𝑤,𝑤−1 is decomposable [13]. There is a
maximal packing of𝐾(V, 𝑤) with leave 𝐿, where |𝐸(𝐿)| = 1 =

|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 13. Suppose V ≡ 4 (mod 5) and𝑤 ≡ 3 (mod 5). Similar to
Case 4, when V − 𝑤 ≥ 11, consider 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤,
where V − 𝑤 ≡ 1 (mod 5) and 𝑤 ≡ 3 (mod 5). There is a
maximal packing of 𝐾V−𝑤,𝑤 with |𝐸(𝐿

2
)| = 3 by Theorem 3

and 𝐾V−𝑤, where V − 𝑤 ≡ 1 (mod 5) is decomposable [9].
Therefore, there is a maximal packing of 𝐾(V, 𝑤) with leave
𝐿, where |𝐸(𝐿)| = 3 = |𝐸(𝐾(V, 𝑤))| (mod 5).

5. Covering the Complete Graph with a Hole

As in the previous section, we assume the vertex set of𝐾(V, 𝑤)

is𝑉(𝐾(V, 𝑤)) = 𝑉V−𝑤 ∪𝑉
𝑤
, where 𝑉V−𝑤 = {0

0
, 1
0
, . . . , (V −𝑤−

1)
0
} and 𝑉

𝑤
= {0
1
, 1
1
, . . . , (𝑤 − 1)

1
}.

Theorem 7. A minimal restricted 𝐻-covering of 𝐾(V, 𝑤) has
padding 𝑃, where |𝐸(𝑃)| = −|𝐸(𝐾(V, 𝑤))|(mod 5), when V −

𝑤 > 2. No restricted𝐻-covering of𝐾(V, 𝑤) exists for V−𝑤 = 2.

Proof. First, suppose V−𝑤 = 2. Consider the edge (0
0
, 1
0
). If

(0
0
, 1
0
) is the pendant edge of an 𝐻, say 𝐻 = [0

0
, 𝑎, 𝑏, 𝑐; 1

0
],

then 0
0
, 1
0
, and 𝑏 must be distinct vertices in 𝑉V−𝑤. But

|𝑉V−𝑤| = 2, so this cannot happen. If (0
0
, 1
0
) is an edge in the

4-cycle of some 𝐻, then there must be an edge in the 4-cycle
of the form (𝑎

1
, 𝑏
1
), a contradiction to the restricted covering.

So, V − 𝑤 > 2 is necessary.
Similar to the argument in Theorem 2, an 𝐻-covering of

𝐾(V, 𝑤)with padding𝑃where |𝐸(𝑃)| = −|𝐸(𝐾(V, 𝑤)| (mod 5)
would be minimal.

Case 1. Suppose V ≡ 0 (mod 5) and 𝑤 ≡ 2 (mod 5). First,
𝐾(5, 2) can be covered with {[0

0
, 0
1
, 2
0
, 1
0
; 1
1
], [2
0
, 0
1
, 1
0
, 1
1
;

0
0
]}, and this has a padding 𝑃 with 𝐸(𝑃) = {(2

0
, 0
1
)} and so

|𝐸(𝑃)| = 1. For general V and𝑤,𝐾(V, 𝑤) = 𝐾(5, 2)∪𝐾V−𝑤−3,3∪
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𝐾V−𝑤,𝑤−2, where the vertex set of 𝐾(5, 2) is {0
0
, 1
0
, 2
0
, 0
1
, 1
1
}

and the hole is on vertex set {0
1
, 1
1
}, the partite sets of𝐾V−𝑤−3,3

are {3
0
, 4
0
, . . . , (V − 𝑤 − 1)

0
} and {0

0
, 1
0
, 2
0
}, and the partite

sets of 𝐾V−𝑤,𝑤−2 are 𝑉V−𝑤 and {2
1
, 3
1
, . . . , (𝑤 − 1)

1
}. Now,

𝐾V−𝑤−3,3 and 𝐾V−𝑤,𝑤−2 can be decomposed [13]. Taking these
decompositions along with the above covering of 𝐾(5, 2)

yields a covering of 𝐾(V, 𝑤) with padding 𝑃, where 𝐸(𝑃) =

{(2
0
, 0
1
)}, and so |𝐸(𝑃)| = 1 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 2. Suppose V ≡ 0 (mod 5) and 𝑤 ≡ 3 (mod 5) or V ≡ 3

(mod 5), and 𝑤 ≡ 4 (mod 5). Consider 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪

𝐾V−𝑤,𝑤, where 𝑉(𝐾V−𝑤) = 𝑉V−𝑤 and the partite sets of 𝐾V−𝑤,𝑤

are 𝑉V−𝑤 and 𝑉
𝑤
and V − 𝑤 ≡ 2 (mod 5) and 𝑤 ≡ 3 (mod 5)

or V − 𝑤 ≡ 4 (mod 5), and 𝑤 ≡ 4 (mod 5). There is a maximal
packing of𝐾V−𝑤 where V−𝑤 ≡ 2 (mod 5) or V−𝑤 ≡ 4 (mod 5)
with |𝐸(𝐿

1
)| = 1 by Theorem 1. There is a maximal packing

of𝐾V−𝑤,𝑤 with |𝐸(𝐿
2
)| = 1 byTheorem 3.Therefore, there is a

minimal covering of𝐾(V, 𝑤) with padding 𝑃, where |𝐸(𝑃)| =

3 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 3. Suppose V ≡ 0 (mod 5), and 𝑤 ≡ 4 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 1

(mod 5), and 𝑤 ≡ 4 (mod 5). There is a minimal covering of
𝐾V−𝑤,𝑤 with padding 𝑃, where |𝐸(𝑃)| = 1 by Theorem 4 and
𝐾V−𝑤, where V−𝑤 ≡ 1 (mod 5) is decomposable [9].Therefore,
there is a minimal covering of𝐾(V, 𝑤)with padding 𝑃, where
|𝐸(𝑃)| = 1 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 4. Suppose V ≡ 1 (mod 5) and 𝑤 ≡ 2 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤∪𝐾V−𝑤,𝑤, as inCase 2, where V−𝑤 ≡ 4 (mod 5)
and 𝑤 ≡ 2 (mod 5). There is a maximal packing of𝐾V−𝑤 with
leave 𝐿

1
, where |𝐸(𝐿

1
)| = 1 by Theorem 1 and, without loss

of generality, 𝐸(𝐿
1
)= {(0

0
, 2
0
)}. There is a maximal packing

of 𝐾V−𝑤,𝑤 with leave 𝐿
2
, where |𝐸(𝐿

2
)| = 3 and 𝐸(𝐿

2
) =

{(2
0
, 0
1
), (0
1
, 3
0
), (3
0
, 1
1
)} by Theorem 3. These two packings

combined with {[2
0
, 0
1
, 3
0
, 1
1
; 0
0
]} yield a covering of𝐾(V, 𝑤)

with padding 𝑃, where 𝐸(𝑃) = {(2
0
, 1
1
)}, so |𝐸(𝑃)| = 1 =

−|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 5. Suppose V ≡ 1 (mod 5) and 𝑤 ≡ 4 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤∪𝐾V−𝑤,𝑤, as inCase 2, where V−𝑤 ≡ 2 (mod 5)
and 𝑤 ≡ 4 (mod 5). There is a maximal packing of𝐾V−𝑤 with
leave 𝐿

1
, where |𝐸(𝐿

1
)| = 1 by Theorem 1 and, without loss

of generality, 𝐸(𝐿
1
)= {(0

1
, 2
1
)}. There is a maximal packing

of 𝐾V−𝑤,𝑤 with leave 𝐿
2
, where |𝐸(𝐿

2
)| = 3 and 𝐸(𝐿

2
) =

{(2
0
, 0
1
), (0
1
, 3
0
), (3
0
, 1
1
)} by Theorem 3. These two packings

combined with {[0
1
, 3
0
, 1
1
, 2
0
; 2
1
]} yield a covering of𝐾(V, 𝑤)

with padding 𝑃, where 𝐸(𝑃) = {(2
0
, 1
1
)}, so |𝐸(𝑃)| = 1 =

−|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 6. Suppose V ≡ 1 (mod 5) and 𝑤 ≡ 3 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤+1∪𝐾V−𝑤,𝑤−1, where𝑉(𝐾V−𝑤+1) = 𝑉V−𝑤∪{𝑤

1
},

and the partite sets of𝐾V−𝑤,𝑤−1 are𝑉V−𝑤 ∪ {𝑤
1
} and𝑉

𝑤
\ {𝑤
1
}.

Then there is a maximal packing of 𝐾V−𝑤+1 with leave 𝐿
1
,

where |𝐸(𝐿
1
)| = 1 by Theorem 1, and there is a maximal

packing of 𝐾V−𝑤,𝑤−1 with leave 𝐿
2
, where |𝐸(𝐿

2
)| = 1 by

Theorem 3. Therefore, we can add an additional copy of 𝐻
which includes the edges in 𝐿

1
and 𝐿

2
. So, there is a minimal

covering of 𝐾(V, 𝑤) with padding 𝑃, where |𝐸(𝑃)| = 3 =

−|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 7. Suppose V ≡ 2 (mod 5) and 𝑤 ≡ 0 (mod 5), or V ≡

4 (mod 5) and 𝑤 ≡ 0 (mod 5). Consider 𝐾(V, 𝑤) = 𝐾V−𝑤 ∪

𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 2 (mod 5), and 𝑤 ≡ 0

(mod 5) or V − 𝑤 ≡ 4 (mod 5), and 𝑤 ≡ 0 (mod 5). There is a
minimal covering of 𝐾V−𝑤 with padding 𝑃, where |𝐸(𝑃)| = 4

by Theorem 2, and 𝐾V−𝑤,𝑤 is decomposable [13]. Therefore,
there is a minimal covering of𝐾(V, 𝑤) with padding 𝑃 where
|𝐸(𝑃)| = 4 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 8. Suppose V ≡ 2 (mod 5) and 𝑤 ≡ 1 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 1

(mod 5) and 𝑤 ≡ 1 (mod 5). There is a minimal covering of
𝐾V−𝑤,𝑤 with padding 𝑃, where |𝐸(𝑃)| = 4 by Theorem 4 and
𝐾V−𝑤, where V−𝑤 ≡ 1 (mod 5) is decomposable [9].Therefore,
there is a minimal covering of𝐾(V, 𝑤)with padding 𝑃, where
|𝐸(𝑃)| = 4 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 9. Suppose V ≡ 2 (mod 5) and 𝑤 ≡ 3 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 4

(mod 5) and 𝑤 ≡ 3 (mod 5). There is a maximal packing
of 𝐾V−𝑤 with leave 𝐿

1
, where |𝐸(𝐿

1
)| = 1 by Theorem 1

and, without loss of generality, 𝐸(𝐿
1
)= {(0

0
, 1
0
)}. There is a

maximal packing of 𝐾V−𝑤,𝑤 with leave 𝐿
2
, where |𝐸(𝐿

2
)| =

2 and 𝐸(𝐿
2
) = {(0

0
, 3
1
), (2
0
, 0
1
)} by Theorem 3. These two

packings combined with {[0
0
, 0
1
, 2
0
, 3
1
; 1
0
]} yield a covering

of 𝐾(V, 𝑤) with padding 𝑃, where 𝐸(𝑃) = {(0
0
, 0
1
), (2
0
, 3
1
)},

so |𝐸(𝑃)| = 2 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 10. Suppose V ≡ 3 (mod 5) and𝑤 ≡ 1 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 2

(mod 5) and 𝑤 ≡ 1 (mod 5). There is a maximal packing
of 𝐾V−𝑤 with leave 𝐿

1
, where |𝐸(𝐿

1
)| = 1 by Theorem 1

and, without loss of generality, 𝐸(𝐿
1
)= {(1

0
, 2
0
)}. These is a

maximal packing of 𝐾V−𝑤,𝑤 with leave 𝐿
2
, where |𝐸(𝐿

2
)| =

2 and 𝐸(𝐿
2
) = {(2

0
, 1
1
), (3
0
, 0
1
)} by Theorem 3. There two

packings combined with {[2
0
, 0
1
, 3
0
, 1
1
; 1
0
]} yield a covering

of 𝐾(V, 𝑤) with padding 𝑃, where 𝐸(𝑃) = {(2
0
, 0
1
), (3
0
, 1
1
)},

so |𝐸(𝑃)| = 2 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 11. Suppose V ≡ 3 (mod 5) and 𝑤 ≡ 0 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤∪𝐾V−𝑤,𝑤, as inCase 2, where V−𝑤 ≡ 3 (mod 5)
and𝑤 ≡ 0 (mod 5).There is a minimal covering of𝐾V−𝑤 with
padding 𝑃, where |𝐸(𝑃)| = 2 by Theorem 2, and 𝐾V−𝑤,𝑤 is
decomposable [13]. Therefore, there is a minimal covering of
𝐾(V, 𝑤) with padding 𝑃, where |𝐸(𝑃)| = 2 = −|𝐸(𝐾(V, 𝑤))|

(mod 5).

Case 12. Suppose V ≡ 3 (mod 5) and𝑤 ≡ 2 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 1

(mod 5) and 𝑤 ≡ 2 (mod 5). There is a minimal covering of
𝐾V−𝑤,𝑤 with padding 𝑃, where |𝐸(𝑃)| = 3 by Theorem 4 and
𝐾V−𝑤, where V−𝑤 ≡ 1 (mod 5) is decomposable [9].Therefore,
there is a minimal covering of𝐾(V, 𝑤)with padding 𝑃, where
|𝐸(𝑃)| = 3 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 13. Suppose V ≡ 4 (mod 5) and 𝑤 ≡ 1 (mod 5). As in
Case 6, we have 𝐾(V, 𝑤) = 𝐾V−𝑤+1 ∪ 𝐾V−𝑤,𝑤−1. Then there is
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aminimal covering of𝐾V−𝑤+1 with padding𝑃, where |𝐸(𝑃)| =

4 byTheorem 2 and𝐾V−𝑤,𝑤−1 is decomposable [13].Therefore,
there is a minimal covering of𝐾(V, 𝑤)with padding 𝑃, where
|𝐸(𝑃)| = 4 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 14. Suppose V ≡ 4 (mod 5) and𝑤 ≡ 3 (mod 5). Consider
𝐾(V, 𝑤) = 𝐾V−𝑤 ∪ 𝐾V−𝑤,𝑤, as in Case 2, where V − 𝑤 ≡ 1

(mod 5) and 𝑤 ≡ 3 (mod 5). There is a minimal covering of
𝐾V−𝑤,𝑤 with padding 𝑃, where |𝐸(𝑃)| = 2 by Theorem 4 and
𝐾V−𝑤, where V−𝑤 ≡ 1 (mod 5) is decomposable [9].Therefore,
there is a minimal covering of𝐾(V, 𝑤)with padding 𝑃, where
|𝐸(𝑃)| = 2 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Theorem 8. A minimal unrestricted 𝐻-covering of 𝐾(V, 𝑤)

has padding 𝑃 where

(1) when V − 𝑤 > 2, |𝐸(𝑃)| = −|𝐸(𝐾(V, 𝑤))|(mod 5),

(2) when V − 𝑤 = 1, |𝐸(𝑃)| = (2/3)𝑤 for 𝑤 ≡ 0(mod 3),
|𝐸(𝑃)| = 2(𝑤+5)/3 for𝑤 ≡ 1( mod 3), |𝐸(𝑃)| = (2𝑤+

5)/3 for 𝑤 ≡ 2(mod 3),

(3) when V − 𝑤 = 2, |𝐸(𝑃)| = 5 − ℓ, where ℓ =

|𝐸(𝐾(V, 𝑤)|(mod 5) for V ̸= 6 and |𝐸(𝑃)| = 6 for V = 6.

Proof. When V − 𝑤 > 2, the necessary and sufficient
conditions follow fromTheorem 7.When V−𝑤 = 1,𝐾(V, 𝑤) ≅

𝐾
1,𝑤

and the necessary and sufficient conditions follow from
Theorem 5.

When V−𝑤 = 2, similar to the argument inTheorem 2, an
𝐻-covering of 𝐾(V, 𝑤) with padding 𝑃 must satisfy |𝐸(𝑃)| ≡

−|𝐸(𝐾(V, 𝑤)| (mod 5). Since an 𝐻-decomposition of 𝐾(V, 𝑤)

does not exist for𝑤 ≡ 2 (mod 5) [13], the necessary conditions
follow for V − 𝑤 = 2 and V ̸= 6. For V = 6, since |𝐸(𝐾(6,

4))| = 9, then an unrestricted 𝐻-covering of 𝐾(6, 4) with
padding 𝑃 where |𝐸(𝑃)| = 1 would be minimal. However,
in such a covering, there are only two copies of 𝐻. Edge
(0
0
, 1
0
) cannot be the pendant edge of a copy of 𝐻 in

such a covering since this copy would have 2 edges in the
padding. If edge (0

0
, 1
0
) is in a copy of 𝐻 and is not the

pendant edge, then this copy of 𝐻 must be of the form
[0
0
, 1
0
, 𝑎
1
, 𝑏
1
; 𝑐
1
] for some distinct 𝑎

1
, 𝑏
1
, 𝑐
1

∈ {0
1
, 1
1
, 2
1
, 3
1
}.

However, the complement of this graph in 𝐾(6, 4) is not a
copy of 𝐻. Therefore, no such 𝐻-covering of 𝐾(6, 4) exists,
and a minimal unrestricted 𝐻-covering of 𝐾(6, 4) with
padding 𝑃, where |𝐸(𝑃)| = 6 would be minimal. The set
{[1
0
, 1
1
, 0
1
, 0
0
; 2
1
], [0
0
, 2
1
, 1
0
, 3
1
; 1
1
], [1
0
, 3
1
, 0
0
, 2
1
; 0
1
]} is an

unrestricted 𝐻-covering of 𝐾(6, 4) with padding 𝑃 where
𝐸(𝑃) = {(0

1
, 1
1
), (1
0
, 2
1
), (0
0
, 2
1
), (1
0
, 2
1
), (1
0
, 3
1
), (0
0
, 3
1
)}. So

|𝐸(𝑃)| = 6, and the covering is minimal.

Case 1. Suppose V − 𝑤 = 2 and 𝑤 ≡ 0 (mod 5); 𝑤 ≥ 5.
Then 𝐾(V, 𝑤) = 𝐾(7, 5) ∪ 𝐾

2,𝑤−5
where the vertex set

of 𝐾(7, 5) is {0
0
, 1
0
, 0
1
, 1
1
, 2
1
, 3
1
, 4
1
} and the hole is on

vertex set {0
1
, 1
1
, 2
1
, 3
1
, 4
1
}, and the partite sets of 𝐾

2,𝑤−5

are {0
0
, 1
0
} and {5

1
, 6
1
, . . . , (𝑤 − 1)

1
}. There is an 𝐻-

decomposition of 𝐾
2,𝑤−5

[13], and the set {[1
0
, 1
1
, 0
1
, 0
0
; 2
1
],

[0
0
, 3
1
, 1
0
, 4
1
; 2
1
], [1
1
, 0
1
, 1
0
, 2
1
; 0
0
]} is an unrestricted 𝐻-

covering of 𝐾(7, 5) with padding 𝑃, where 𝐸(𝑃) =

{(0
1
, 1
1
), (0
1
,1
1
), (1
1
, 2
1
), (1
0
, 2
1
)} and |𝐸(𝑃)| = 4. So, there is

an unrestricted covering of 𝐾(V, 𝑤) with padding 𝑃, where
|𝐸(𝑃)| = 4 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 2. Suppose V − 𝑤 = 2, 𝑤 ≡ 1 (mod 5); 𝑤 ≥ 6.
Then, as in Case 1, 𝐾(V, 𝑤) = 𝐾(8, 2) ∪ 𝐾

2,𝑤−6
. There is

an 𝐻-decomposition of 𝐾
2,𝑤−6

[13], and the set {[1
0
, 1
1
, 0
1
,

0
0
; 2
1
], [1
0
, 3
1
, 0
0
, 4
1
; 0
1
], [0
1
, 2
1
, 1
0
, 5
1
; 1
1
]} is an unrestricted

𝐻-covering of 𝐾(8, 6) with padding 𝑃, where 𝐸(𝑃) =

{(0
1
, 1
1
), (1
0
, 2
1
)} and |𝐸(𝑃)| = 2. So, there is an unrestricted

covering of 𝐾(V, 𝑤) with padding 𝑃, where |𝐸(𝑃)| = 2 =

−|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 3. Suppose V − 𝑤 = 2 and 𝑤 ≡ 2 (mod 5); 𝑤 ≥ 7. Then,
as in Case 1, 𝐾(V, 𝑤) = 𝐾(9, 7) ∪ 𝐾

2,𝑤−7
. There is an 𝐻-

decomposition of 𝐾
2,𝑤−7

[13], and the set {[1
0
, 1
1
, 0
1
, 0
0
; 2
1
],

[1
0
, 3
1
, 0
0
, 4
1
; 0
1
], [0
1
, 2
1
, 1
0
, 5
1
; 1
1
], [0
0
, 5
1
, 1
0
, 6
1
; 0
1
]} is an

unrestricted 𝐻-covering of 𝐾(9, 7) with padding 𝑃,
where 𝐸(𝑃) = {(0

1
, 1
1
), (1
0
, 2
1
), (0
0
, 0
1
), (0
0
, 5
1
), (1
0
, 5
1
)} and

|𝐸(𝑃)| = 5. So, there is an unrestricted covering of 𝐾(V, 𝑤)

with padding 𝑃, where |𝐸(𝑃)| = 5 = 5 − ℓ, where ℓ = 0 =

−|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 4. Suppose V−𝑤 = 2 and𝑤 ≡ 3 (mod 5).Then, as in Case
1,𝐾(V, 𝑤) = 𝐾(5, 3)∪𝐾

2,𝑤−3
.There is an𝐻-decomposition of

𝐾
2,𝑤−3

[13], and the set {[1
0
, 0
0
, 0
1
, 1
1
; 2
1
], [0
1
, 2
1
, 0
0
, 1
1
; 1
0
]} is

an unrestricted𝐻-covering of𝐾(5, 3) with padding 𝑃, where
𝐸(𝑃) = {(0

1
, 1
1
), (0
1
,1
1
), (0
1
, 2
1
)} and |𝐸(𝑃)| = 3. So, there is

an unrestricted covering of 𝐾(V, 𝑤) with padding 𝑃𝑛 where
|𝐸(𝑃)| = 3 = −|𝐸(𝐾(V, 𝑤))| (mod 5).

Case 5. Suppose V − 𝑤 = 2 and 𝑤 ≡ 4 (mod 5); 𝑤 ≥ 9. Then,
as in Case 1, 𝐾(V, 𝑤) = 𝐾(11, 9) ∪ 𝐾

2,𝑤−9
. There is an 𝐻-

decomposition of 𝐾
2,𝑤−9

[13], and the set {[1
0
, 1
1
, 0
1
, 0
0
; 2
1
],

[0
0
, 7
1
, 1
0
, 8
1
; 1
1
], [0
0
, 5
1
, 1
0
, 6
1
; 2
1
], [0
0
, 3
1
, 1
0
, 4
1
; 0
1
]} is an

unrestricted covering of 𝐾(11, 9) with padding 𝑃, where
𝐸(𝑃) = {(0

1
, 1
1
)} and |𝐸(𝑃)| = 1. So, there is an unrestricted

covering of 𝐾(V, 𝑤) with padding 𝑃, where |𝐸(𝑃)| = 1 =

−|𝐸(𝐾(V, 𝑤))| (mod 5).

6. Conclusion

Motivated by experimental designs and comparisons of
samples, we have given necessary and sufficient conditions
for the 𝐻-packings and 𝐻-coverings of complete graphs,
complete bipartite graphs, and complete graphs with a hole,
where 𝐻 is a 4-cycle with a pendant edge. For complete
bipartite graphs and complete graphs with a hole, we have
given both restricted and unrestricted coverings.
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