SOME INEQUALITIES FOR THE MAXIMUM MODULUS OF RATIONAL FUNCTIONS

R. GARDNER, N. K. GOVIL, AND P. KUMAR

ABSTRACT. For a polynomial $p(z)$ of degree n, it follows from the Maximum Modulus Theorem that $\max_{|z|=R \geq 1} |p(z)| \leq R^n \max_{|z|=1} |p(z)|$. It was shown by Ankeny and Rivlin in 1955 that if $p(z) \neq 0$ for $|z| < 1$ then $\max_{|z|=R \geq 1} |p(z)| \leq \frac{R^n+1}{2} \max_{|z|=1} |p(z)|$. These two results were extended to rational functions by Govil and Mohapatra [4]. In this paper, we give refinements of these results of Govil and Mohapatra.

1. Introduction and Statement of Results

Let \mathcal{P}_n denote the set of all complex algebraic polynomials p of degree at most n and let p' be the derivative of p. For a function f defined on the unit circle $T = \{z \mid |z|=1\}$ in the complex plane \mathbb{C}, set $\|f\| = \sup_{z \in T} |f(z)|$, the Chebyshev norm of f on T.

Let \mathbb{D}_- denote the region strictly inside T, and \mathbb{D}_+ the region strictly outside T. For $a_v \in \mathbb{C}$, $v = 1, 2, \ldots, n$, let $w(z) = \prod_{v=1}^{n} (z-a_v)$, $B(z) = \prod_{v=1}^{n} (1-\overline{a}_v z)/(z-a_v)$ being the Blaschke product, and $\mathcal{R}_n = \mathcal{R}_n(a_1, a_2, \ldots, a_n) = \{p(z)/w(z) \mid p \in \mathcal{P}_n\}$. Then \mathcal{R}_n is the set of rational functions with possible poles at a_1, a_2, \ldots, a_n and having a finite limit at ∞. Also note that $B(z) \in \mathcal{R}_n$.

DEFINITIONS.

(i): For polynomial $p(z) = \sum_{v=0}^{n} \alpha_v z^v$, the conjugate transpose (reciprocal) p^* of p is defined by

$$ p^*(z) = z^n \overline{p(1/z)} = z^n \overline{p(1/z)} = \overline{\alpha}_0 z^n + \overline{\alpha}_1 z^{n-1} + \cdots + \overline{\alpha}_n. $$

(ii): For rational function $r(z) = p(z)/w(z) \in \mathcal{R}_n$, the conjugate transpose, r^*, of r is defined by

$$ r^*(z) = B(z) \overline{r(1/z)} = B(z) \overline{r(1/z)}. $$

(iii): The polynomial $p \in \mathcal{P}_n$ is self-inversive if $p^*(z) = \lambda p(z)$ for some $\lambda \in T$.

(iv): The rational function $r \in \mathcal{R}_n$ is self-inversive if $r^*(z) = \lambda r(z)$ for some $\lambda \in T$.

It is easy to verify that if $r \in \mathcal{R}_n$ and $r = p/w$, then $r^* = p^*/w$ and hence $r^* \in \mathcal{R}_n$. So p/w is self-inversive if and only if p is self-inversive.

If $p \in \mathcal{P}_n$, then it is well known that

$$ \max_{|z|=R \geq 1} |p(z)| \leq R^n \|p\|. \tag{1.1} $$

2010 Mathematics Subject Classification. 30A10.

Key words and phrases. inequalities, polynomials, zeros.
This inequality is an immediate consequence of the Maximum Modulus Theorem. Further, if \(p \) has all its zeros in \(T \cup \mathbb{D}_+ \), then

\[
\max_{|z|=R \geq 1} |p(z)| \leq \frac{R^n + 1}{2} \|p\|.
\]

The inequality (1.2) is due to Ankeny and Rivlin [1]. Both inequalities (1.1) and (1.2) are sharp, inequality (1.1) becomes equality for \(p(z) = \lambda z^n \) where \(\lambda \in \mathbb{C} \), and inequality (1.2) becomes equality for \(p(z) = \alpha z^n + \beta \) where \(|\alpha| = |\beta| \).

Govil and Mohapatra [4] gave a result analogous to inequality (1.1), but for rational functions, as follows.

THEOREM A. If \(r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^{n} (z - a_v)} \in \mathbb{R}_n \) is a rational function with \(|a_v| > 1 \) for \(1 \leq v \leq n \), then for \(|z| \geq 1 \),

\[
|r(z)| \leq \|r\| \|B(z)\|.
\]

This result is best possible and equality holds for \(r(z) = \lambda \prod_{v=1}^{n} \frac{1 - \bar{a}_v z}{z - a_v} = \lambda B(z) \) where \(\lambda \in \mathbb{C} \).

In the same paper, Govil and Mohapatra [4] also proved a result given below, that is analogous to inequality (1.2) for rational functions.

THEOREM B. Let \(r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^{n} (z - a_v)} \in \mathbb{R}_n \) with \(|a_v| > 1 \) for \(1 \leq v \leq n \). If all the zeros of \(r \) lie in \(T \cup \mathbb{D}_+ \), then for \(|z| \geq 1 \),

\[
|r(z)| \leq \|r^*\| \|B(z)\| + \frac{1}{2}.
\]

This result is best possible and equality holds for the rational function \(r(z) = \alpha B(z) + \beta \) where \(|\alpha| = |\beta| \).

In this paper we prove the following refinements of the above two theorems. Here \(p(z) = \sum_{v=0}^{n} \alpha_v z^v \) is a polynomial of degree \(n \).

Theorem 1.1. If

\[
r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^{n} (z - a_v)} \in \mathbb{R}_n
\]

is a rational function with \(|a_v| > 1 \), \(1 \leq v \leq n \), then for \(|z| \geq 1 \),

\[
|r(z)| \leq \|r\| \|B(z)\| \left(1 - \frac{|r^*(0)| (|z| - 1)}{|r^*(0)| + |z| \|r^*\|} \right).
\]

The result is best possible and equality holds for \(r(z) = \lambda B(z) \) where \(\lambda \in \mathbb{C} \).

It is clear that Theorem 1 sharpens Theorem A. Also, we can use Theorem 1 to derive a sharpening form of Bernstein’s Inequality for polynomials. For this, let
\[p(z) = \sum_{v=0}^{n} \alpha_v z^v \] be a polynomial of degree \(n \). Then \(r(z) = \frac{p(z)}{\prod_{v=1}^{n} (z - a_v)} \in \mathcal{R}_n \)
and hence by Theorem 1, for \(|z| \geq 1 \),
\begin{equation}
\left| \frac{r(z)}{B(z)} \right| = \left| \frac{p(z)}{\prod_{v=1}^{n} (1 - \alpha_v z)} \right| \leq \left\| r \right\| \left\{ 1 \left(\left\| r \right\| - |r^*(0)| (|z| - 1) \right) \right\}.
\end{equation}
If \(z^* \) on \(|z| = 1 \) is such that
\begin{equation}
\left\| r \right\| = |r(z^*)| = \frac{|p(z^*)|}{\prod_{v=1}^{n} (z^* - a_v)}
\end{equation}
then we get from (1.6)
\begin{equation}
\left| \frac{p(z)}{\prod_{v=1}^{n} (1 - \alpha_v z)} \right| \leq \frac{|p(z^*)|}{\prod_{v=1}^{n} |z^* - a_v|} \left\{ 1 \left(\frac{|p(z^*)| - |r^*(0)| \prod_{v=1}^{n} |z^* - a_v|}{|r^*(0)| \prod_{v=1}^{n} |z^* - a_v| + |z| |p(z^*)|} \right) \right\}.
\end{equation}
Since \(p(z) = \sum_{v=0}^{n} \alpha_v z^v \) and \(r^*(z) = \frac{p^*(z)}{\prod_{v=1}^{n} (z - a_v)} \), we get \(|r^*(0)| = \frac{|\alpha_n|}{\prod_{v=1}^{n} |a_v|} \)
and therefore from (1.8) we have for \(|z| > 1 \),
\begin{equation}
|p(z)| \leq |p(z^*)| |z|^n \left\{ 1 \left(\frac{|p(z^*)| - |\alpha_n| \prod_{v=1}^{n} |z^* - a_v|}{|\alpha_n| \prod_{v=1}^{n} |z^* - a_v| + |z| |p(z^*)|} \right) \right\}.
\end{equation}
Since (1.9) holds for all \(|a_v| \geq 1 \), where \(1 \leq v \leq n \), making \(|a_v| \to \infty \), where
\begin{equation}
|p(z)| \leq \left\| r \right\| |z|^n \left\{ 1 \left(\frac{\left\| r \right\| - |\alpha_n| (|z| - 1)}{|\alpha_n| + |z| \left\| r \right\|} \right) \right\},
\end{equation}
We show in Lemma 5 in the next section that (1.10) implies for \(|z| \geq 1 \)
\begin{equation}
|p(z)| \leq \left\| r \right\| |z|^n \left\{ 1 \left(\frac{\left\| r \right\| - |\alpha_n| (|z| - 1)}{|\alpha_n| + |z| \left\| r \right\|} \right) \right\},
\end{equation}
which is equivalent to that for \(|z| = R \geq 1 \),
\begin{equation}
|p(z)| \leq R^n \left\{ 1 \left(\frac{\left\| r \right\| - |\alpha_n| (R - 1)}{|\alpha_n| + R \left\| r \right\|} \right) \right\} \left\| r \right\|.
\end{equation}
This rate of growth result for a polynomial, which is a sharpening of Bernstein Inequality, first appeared as Lemma 3 of [2].
As a refinement of Theorem B, we shall prove

Theorem 1.2. Let
\[r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^{n} (z - a_v)} \in \mathcal{R}_n \]
with \(|a_v| > 1 \) for \(1 \leq v \leq n \). If all the zeros of \(r \) lie in \(\mathbb{T} \cup \mathbb{D}_+ \), then for \(|z| \geq 1 \)
\[|r(z)| \leq \frac{1}{2} \left(\left\| r \right\| (|B(z)| + 1) - (\left\| B(z) \right\| - 1 \min_{|z|=1} |r(z)|) \right). \]
Clearly Theorems 1.1 and 1.2 without any additional hypotheses, give bounds that are sharper than those obtainable from Theorems A and B respectively.
2. Lemmas

The following is a well known generalization of Schwarz’s Lemma (see, for example, [3]).

Lemma 2.1. If \(f \) is analytic inside and on the circle \(|z| = 1\), then for \(|z| \leq 1\),

\[
|f(z)| \leq \|f\| \|\frac{|f|}{|f(0)|} + \|f\|.
\]

The next two results are due to Govil and Mohapatra [4].

Lemma 2.2. Let \(r \in \mathcal{R}_n \) with all its poles in \(\mathbb{D}_+ \). If \(r \) has all its zeros in \(\mathbb{T} \cup \mathbb{D}_+ \),
then for all \(|z| \geq 1\), \(|r(z)| \leq |r^*(z)|\).

Lemma 2.3. Let \(r \in \mathcal{R}_n \) with all its poles in \(\mathbb{D}_+ \). Then for \(|z| \geq 1\),
\[
|r(z)| + |r^*(z)| \leq \|r\|(|B(z)| + 1).
\]

Lemma 2.4. Let \(r \in \mathcal{R}_n \) with all its poles in \(\mathbb{D}_+ \). If \(r \) has all its zeros in \(\mathbb{T} \cup \mathbb{D}_+ \),
then for \(|z| \geq 1\), we have
\[
|r(z)| + (|B(z)| - 1) \min_{|z| = 1} |r(z)| \leq |r^*(z)|.
\]

Proof. Since the rational function \(r \) has no zeros in \(\mathbb{D}_- \) hence for every \(\alpha \in \mathbb{C} \) with \(|\alpha| < 1\), the rational function \(r(z) - \alpha \min_{|z| = 1} |r(z)| \) has no zero in \(\mathbb{D}_- \) and has all its poles, like \(r \), in \(\mathbb{D}_+ \). Applying Lemma 2.2 to \(r(z) - \alpha \min_{|z| = 1} |r(z)| \) we get that for \(|z| \geq 1\)
\[
|r(z) - \alpha \min_{|z| = 1} |r(z)|| \leq |r^*(z) - B(z)\alpha \min_{|z| = 1} |r(z)||,
\]
and so for \(|z| \geq 1\),
\[
|r(z) - |\alpha| \min_{|z| = 1} |r(z)|| \leq |r^*(z) - B(z)\alpha \min_{|z| = 1} |r(z)||.
\]

With the appropriate choice of \(\arg(\alpha) \) we then have for \(|z| \geq 1\),
\[
|r(z)| - |\alpha| \min_{|z| = 1} |r(z)| \leq |r^*(z)| - |\alpha| |B(z)| \min_{|z| = 1} |r(z)|.
\]

Note that \(r \) has no zeros in \(\mathbb{D}_- \) and so is analytic in \(|z| \leq 1\). Hence by the Minimum Modulus Theorem, we have \(|r(z)| > |\alpha| \min_{|z| = 1} |r(z)|\) for \(|z| \leq 1\). Therefore for \(|z| \geq 1\) we get
\[
|r^*(z)| = |\frac{B(z)r(1/\overline{z})}{|B(z)|}\overline{r(1/\overline{z})}| > |\alpha| |B(z)| \min_{|z| = 1} |r(z)|,
\]
which clearly implies that the right-hand side of (2.2) is positive. Making \(|\alpha| \to 1\)
in (2.3), we easily get
\[
|r(z)| + (|B(z)| - 1) \min_{|z| = 1} |r(z)| \leq |r^*(z)|, \text{ for } |z| \geq 1,
\]
which is (2.2), and thus the proof of Lemma 2.4 is complete. \(\square\)
Lemma 2.5. The function
\[g(x) = x \left\{ 1 - \frac{(x - |\alpha_n|)(|z| - 1)}{|\alpha_n| + |z|x} \right\}, \]
where \(\alpha_n, z \in \mathbb{C} \) with \(z \neq 0 \), is an increasing function for \(x \geq 0 \).

Proof. We have
\[g'(x) = \frac{|z|x^2 + 2|\alpha_n||z| + |z|^2|\alpha_n|^2}{(|\alpha_n| + |z|x)^2} \geq 0 \]
for \(x \geq 0 \). So \(g \) is an increasing function for \(x \geq 0 \), as claimed. \(\square \)

3. Proofs of Theorems

Proof of Theorem 1.1. Since
\[r(z) = \frac{p(z)}{w(z)} = \frac{p(z)}{\prod_{v=1}^n(z - a_v)} \in \mathcal{R}_n \]
with \(|a_v| > 1 \) for \(1 \leq v \leq n \), the function \(r^*(z) = p^*(z)/\prod_{v=1}^n(z - a_v) \) is analytic in \(|z| \leq 1 \). Therefore by Lemma 2.1 we get that, for \(|z| \leq 1 \),
\[|r^*(z)| \leq ||r^*|| \frac{||r^*|| |z| + |r^*(0)|}{|r^*(0)||z| + ||r^*||} \]
and since \(||r^*|| = ||r|| \), inequality (3.1) is in fact equivalent to the inequality that, for \(|z| \leq 1 \),
\[|r^*(z)| \leq ||r|| \frac{||r|| |z| + |r^*(0)|}{|r^*(0)||z| + ||r||}. \]
Since by definition \(r^*(z) = B(z)r(1/\overline{z}) \), we get from (3.2) that for \(|z| \leq 1 \),
\[\overline{r(1/\overline{z})} \leq \frac{||r||}{B(z)} \frac{||r|| |z| + |r^*(0)|}{|r^*(0)||z| + ||r||}, \]
which clearly gives that for \(|z| \geq 1 \),
\[|r(z)| \leq \frac{||r||}{B(1/\overline{z})} \frac{||r|| + |r^*(0)| |z|}{|r^*(0)||z| + ||r|| |z|}. \]
It is clear from the definition of \(B(z) \) that \(|B(1/\overline{z})| = 1/|B(z)| \) and this, when combined with (3.3), gives that for \(|z| \geq 1 \),
\[|r(z)| \leq ||r|| \frac{||r|| + |r^*(0)| |z|}{|r^*(0)||z| + ||r|| |z|} \]
\[= ||r|| |B(z)| \left(1 - \frac{(||r|| - |r^*(0)|)(|z| - 1)}{|r^*(0)||z| + ||r|| |z|} \right), \]
which is (1.5) and this completes the proof of the Theorem 1.1. \(\square \)

Proof of Theorem 1.2. Since \(r \in \mathcal{R}_n \) and has all its poles in \(\mathbb{D}_+ \) hence, by Lemma 2.3, for \(|z| \geq 1 \) we have
\[|r(z)| + |r^*(z)| \leq ||r||(|B(z)| + 1). \]
Because r has all its zeros in $\mathbb{T} \cup \mathbb{D}_+$, therefore we can apply Lemma 2.4 to r, and this will give that for $|z| \geq 1$,
\begin{equation}
|r(z)| + (|B(z)| - 1) \min_{|z|=1} |r(z)| \leq |r^*(z)|.
\end{equation}
Combining the conclusion of (3.5) with (3.4) we get that for $|z| \geq 1$.
\[2|r(z)| + (|B(z)| - 1) \min_{|z|=1} |r(z)| \leq \|r\|(|B(z)| + 1),\]
which is clearly equivalent to
\[|r(z)| \leq \frac{1}{2} \left(\|r\|(|B(z)| + 1) - (|B(z)| - 1) \min_{|z|=1} |r(z)| \right),\]
and the proof of Theorem 1.2 is thus complete. \square

References