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Abstract. In this paper, we consider the class Pn,µ, of polynomials of the form P (z) =

a0 +
∑n

j=µ ajz
j. We impose hypotheses on the coefficients of such a polynomial and then

restrict the number of zeros in a disk centered at the origin.
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1 Introduction

While studying Bernstein type inequalities, Chan and Malik [5] introduced the class of

polynomials of the form P (z) = a0+
∑n

j=µ ajz
j. We denote the class of all of such polynomials

as Pn,µ. Notice that when µ = 1, we simply have the class of all polynomials of degree n.

This class has been extensively studied in connection with Bernstein type inequalities (see,

for example, [3, 8, 9, 15, 10]).

The purpose of this paper is to study the number of zeros in a disk of a polynomial in

the class Pn,µ. The first result concerning counting zeros which is of relevance to our study

can be found in Titchmarsh’s The Theory of Functions [16]:

Theorem 1.1 If all of the zeros of polynomial p(z) =

n∑

k=0

akz
k, a0 6= 0, lie in |z| ≤ R and

|p(z)| ≤ M for |z| ≤ R, then the number of zeros in |z| ≤ δR, where 0 < δ < 1, does not

exceed
1

log 1/δ
log

M

|a0|
.
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2 Results

In this section, we provide three main theorems and several corollaries. We consider poly-

nomials in Pn,µ and put restrictions on the moduli of the coefficients (in Theorem 2.1), the

real parts of the coefficients (in Theorem 2.5), and on both the real and imaginary parts of

the coefficients (in Theorem 2.9). Each result puts a bound on the number of zeros of the

polynomial in a disk centered about 0.

Theorem 2.1 Let P (z) = a0 +

n∑

j=µ

ajz
j where a0 6= 0 and for some t > 0 and some k with

µ ≤ k ≤ n,

tµ|aµ| ≤ · · · ≤ tk−1|ak−1| ≤ tk|ak| ≥ tk+1|ak+1| ≥ · · · ≥ tn−1|an−1| ≥ tn|an|

and |argaj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for 0 < δ < 1

the number of zeros of P (z) in the disk |z| ≤ δt does not exceed

1

log 1/δ
log

M

|a0|

where M = 2|a0|t + |aµ|t
µ+1(1− cosα− sinα)+ 2|ak|t

k+1 cosα+ |an|t
n+1(1− cos α− sinα)+

2
∑n

j=µ |aj|t
j+1 sinα.

With t = 1 in Theorem 2.1 we get the following.

Corollary 2.2 Let P (z) = a0 +

n∑

j=µ

ajz
j where a0 6= 0 and for some t > 0 and some k with

µ ≤ k ≤ n,

|aµ| ≤ · · · ≤ |ak−1| ≤ |ak| ≥ |ak+1| ≥ · · · ≥ |an−1| ≥ |an|

and |argaj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for 0 < δ < 1

the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|

where M = 2|a0|+|aµ|(1−cosα−sinα)+2|ak| cos α+|an|(1−cosα−sinα)+2
∑n

j=µ |aj| sinα.
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With k = n in Corollary 2.2 we get:

Corollary 2.3 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0,

|aµ| ≤ · · · ≤ |an−1| ≤ |an|

and |argaj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for 0 < δ < 1

the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|

where M = 2|a0| + |aµ|(1 − cosα − sinα) + |an|(1 + cos α − sinα) + 2
∑n

j=µ |aj| sinα.

With k = µ in Corollary 2.2 we get:

Corollary 2.4 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0,

|aµ| ≥ · · · ≥ |an−1| ≥ |an|

and |argaj − β| ≤ α ≤ π/2 for µ ≤ j ≤ n and for some real α and β. Then for 0 < δ < 1

the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|

where M = 2|a0| + |aµ|(1 + cos α − sinα) + |an|(1 − cos α − sinα) + 2
∑n

j=µ |aj| sinα.

Theorem 2.1 requires the moduli of the coefficients of a polynomial in Pn,µ to satisfy the

monotonicity condition as stated in the theorem. We now modify the hypotheses of Theorem

2.1 by imposing the monotonicity condition only on the real parts of the coefficients.

Theorem 2.5 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some t > 0 and some k with µ ≤ k ≤ n we have

tµαµ ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn.
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Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|)t + (|αµ| − αµ)t
µ+1 + 2αkt

k+1 + (|αn| − αn)tn+1 + 2
∑n

j=µ |βj|t
j+1.

With t = 1 in Theorem 2.5, we get:

Corollary 2.6 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that we have

αµ ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ αn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ| − αµ) + 2αk + (|αn| − αn) + 2
∑n

j=µ |βj|.

Example. Consider the polynomial P (z) = 0.1 + 0.001z2 + 2z3 + 0.002z4 + 0.002z5 +

0.001z6. The zeros of P are approximately z1 = −0.368602, z2 = 0.184076 + 0.319010i,

z3 = 0.184076 − 0.319010i, and z4 = 5.62344 + 10.92507i, z5 = 5.62344 − 10.92507i, and

z6 = −13.2464. Corollary 2.6 applies to P with µ = 2 and k = 3. With δ = 0.37 we see that

it predicts no more than 3.75928 zeros in |z| ≤ 0.37. In other words, Corollary 2.6 predicts

at most three zeros in |z| ≤ 0.37 In fact, P does have exactly three zeros in |z| ≤ 0.37,

namely z1, z2, and z3. So Corollary 2.6 is sharp for this example.

With k = n in Corollary 2.6 we get:

Corollary 2.7 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that we have

αµ ≤ · · · ≤ αn−1 ≤ αn.
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Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ| − αµ) + (|αn| + αn) + 2
∑n

j=µ |βj|.

With k = µ in Corollary 2.6 we get:

Corollary 2.8 Let P (z) = a0 +

n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that we have

αµ ≥ · · · ≥ αn−1 ≥ αn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ|+ αµ) + (|αn| − αn) + 2
∑n

j=µ |βj|.

We now state a final theorem in the same style as Theorems 2.1 and 2.5. If we have a

monotonicity condition on both the real and imaginary parts of the coefficients (separately),

then we have the potential of improving on Theorem 2.5. This leads us to the following.

Theorem 2.9 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some t > 0 and some k with µ ≤ k ≤ n we have

tµαµ ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥ tn−1αn−1 ≥ tnαn

and for some µ ≤ ` ≤ n we have

tµβµ ≤ · · · ≤ t`−1β`−1 ≤ t`β` ≥ t`+1β`+1 ≥ · · · ≥ tn−1βn−1 ≥ tnβn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δt does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0| + |β0|)t + (|αµ| − αµ + |βµ| − βµ)t
µ+1 + 2(αkt

k+1 + β`t
`+1) + (|αn| − αn +

|βn| − βn)t
n+1.
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In Theorem 2.9 if we let t = 1 we get the following.

Corollary 2.10 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n we have

αµ ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ αn

and for some µ ≤ ` ≤ n we have

βµ ≤ · · · ≤ β`−1 ≤ β` ≥ β`+1 ≥ · · · ≥ βn−1 ≥ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + 2(αk + β`) + (|αn| − αn + |βn| − βn).

In Corollary 2.10 if we let k = ` = n we get the following.

Corollary 2.11 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n we have

αµ ≤ · · · ≤ αn−1 ≤ αn

and for some µ ≤ ` ≤ n we have

βµ ≤ · · · ≤ βn−1 ≤ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ| − αµ + |βµ| − βµ) + (|αn| + αn + |βn| + βn).

In Corollary 2.10 if we let k = ` = µ we get the following.
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Corollary 2.12 Let P (z) = a0 +
n∑

j=µ

ajz
j where a0 6= 0, Reaj = αj and Im aj = βj for

µ ≤ j ≤ n. Suppose that for some k with µ ≤ k ≤ n we have

αµ ≥ · · · ≥ αn−1 ≥ αn

and for some µ ≤ ` ≤ n we have

βµ ≥ · · · ≥ βn−1 ≥ βn.

Then for 0 < δ < 1 the number of zeros of P (z) in the disk |z| ≤ δ does not exceed

1

log 1/δ
log

M

|a0|
.

where M = 2(|α0|+ |β0|) + (|αµ|+ αµ + |βµ|+ βµ) + (|αn| − αn + |βn| − βn).

In Corollary 2.10, we get similar corollaries by letting k = n and ` = µ, or k = µ and

` = n.

3 Proof of the Results

The following is due to Govil and Rahman and appears in [11].

Lemma 3.1 Let z, z′ ∈ C with |z| ≥ |z′|. Suppose |arg z∗ − β| ≤ α ≤ π/2 for z∗ ∈ {z, z′}

and for some real α and β. Then

|z − z′| ≤ (|z| − |z′|) cos α + (|z|+ |z′|) sinα.

We now give proofs of our results.

Proof of Theorem 2.1. Consider

F (z) = (t − z)P (z) = (t − z)(a0 +
n∑

j=µ

ajz
j) = a0t +

n∑

j=µ

ajtz
j − a0z −

n∑

j=µ

ajz
j+1

= a0(t− z) +
n∑

j=µ

ajtz
j −

n+1∑

j=µ+1

aj−1z
j

= a0(t− z) + aµtz
µ +

n∑

j=µ+1

(ajt − aj−1)z
j − anz

n+1.
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For |z| = t we have

|F (z)| ≤ 2|a0|t + |aµ|t
µ+1 +

n∑

j=µ+1

|ajt − aj−1|t
j + |an|t

n+1

= 2|a0|t + |aµ|t
µ+1 +

k∑

j=µ+1

|ajt − aj−1|t
j +

n∑

j=k+1

|aj−1 − ajt|t
j + |an|t

n+1

≤ 2|a0|t + |aµ|t
µ+1 +

k∑

j=µ+1

{(|aj|t − |aj−1|) cos α + (|aj−1| + |aj|t) sinα} tj

+
n∑

j=k+1

{(|aj−1| − |aj|t) cos α + (|aj|t + |aj−1|) sinα} tj + |an|t
n+1

by Lemma 3.1 with z = ajt and z′ = aj−1 when 1 ≤ j ≤ k,

and with z = aj−1 and z′ = ajt when k + 1 ≤ j ≤ n

= 2|a0|t + |aµ|t
µ+1 +

k∑

j=µ+1

|aj|t
j+1 cos α −

k∑

j=µ+1

|aj−1|t
j cos α +

k∑

j=µ+1

|aj−1|t
j sinα

+
k∑

j=µ+1

|aj|t
j+1 sinα +

n∑

j=k+1

|aj−1|t
j cosα −

n∑

j=k+1

|aj|t
j+1 cos α

+

n∑

j=k+1

|aj|t
j+1 sinα +

n∑

j=k+1

|aj−1|t
j sinα + |an|t

n+1

= 2|a0|t + |aµ|t
µ+1 − |aµ|t

µ+1 cos α + |ak|t
k+1 cos α + |aµ|t

µ+1 sinα

+|ak|t
k+1 sin α + 2

k−1∑

j=µ+1

|aj|t
j+1 sinα + |ak|t

k+1 cos α − |an|t
n+1 cos α + |ak|t

k+1 sin α

+|an|t
n+1 sinα + 2

n−1∑

j=k+1

|aj|t
j+1 sinα + |an|t

n+1

= 2|a0|t + |aµ|t
µ+1 + |aµ|t

µ+1(sinα − cos α) + 2

n−1∑

j=µ+1

|aj|t
j+1 sinα

+2|ak|t
k+1 cosα + (sinα − cos α + 1)|an|t

n+1

= 2|a0|t + |aµ|t
µ+1(1 − cos α − sin α) + 2|ak|t

k+1 cos α

+|an|t
n+1(1 − cosα − sinα) + 2

n∑

j=µ

|aj|t
j+1 sinα

= M.

Now F (z) is analytic in |z| ≤ t, and |F (z)| ≤ M for |z| = t. So by Theorem A and the

Maximum Modulus Theorem, the number of zeros of F (and hence of P ) in |z| ≤ δt is less
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than or equal to
1

log 1/δ
log

M

|a0|
.

The theorem follows.

Proof of Theorem 2.5. As in the proof of Theorem 2.1,

F (z) = (t − z)P (z) = a0(t − z) + aµtz
µ +

n∑

j=µ+1

(ajt − aj−1)z
j − anz

n+1,

and so

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑

j=µ+1

((αj + iβj)t − (αj−1 + iβj−1))z
j

−(αn + iβn)z
n+1

= (α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑

j=µ+1

(αjt − αj−1)z
j + i

n∑

j=µ+1

(βjt− βj−1)z
j

−(αn + iβn)z
n+1.

For |z| = t we have

|F (z)| ≤ 2(|α0| + |β0|)t + (|αµ| + |βµ|)t
µ+1 +

n∑

j=µ+1

|αjt − αj−1|t
j +

n∑

j=µ+1

(|βj|t + |βj−1|)t
j

+(|αn| + |βn|)t
n+1

= 2(|α0| + |β0|)t + (|αµ| + |βµ|)t
µ+1 +

k∑

j=µ+1

(αjt− αj−1)t
j +

n∑

j=k+1

(αj−1 − αjt)t
j

+|βµ|t
µ+1 + 2

n−1∑

j=µ+1

|βj|t
j+1 + |βn|t

n+1 + (|αn| + |βn|)t
n+1

= 2(|α0| + |β0|)t + (|αµ| + |βµ|)t
µ+1 − αµtµ+1 + 2αkt

k+1 − αntn+1 + |βµ|t
µ+1

+2

n∑

j=µ+1

|βj|t
j+1 + |αn|t

n+1

= 2(|α0| + |β0|)t + (|αµ| − αµ)t
µ+1 + 2αkt

k+1 + (|αn| − αn)tn+1 + 2
n∑

j=µ

|βj|t
j+1

= M.

The result now follows as in the proof of Theorem 2.1.
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Proof of Theorem 2.9. As in the proof of Theorem 2.1,

F (z) = (t− z)P (z) = a0(t − z) + at
µz

µ +
n∑

j=µ

(ajt − aj−1)z
j − anz

n+1,

and so

F (z) = (α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑

j=µ+1

((αj + iβj)t − (αj−1 + iβj−1))z
j

−(αn + iβn)z
n+1

= (α0 + iβ0)(t− z) + (αµ + iβµ)tz
µ +

n∑

j=µ+1

(αjt − αj−1)z
j + i

n∑

j=µ+1

(βjt− βj−1)z
j

−(αn + iβn)z
n+1

For |z| = t we have

|F (z)| ≤ (|α0| + |β0|)2t + (|αµ| + |βµ|)t
µ+1 +

n∑

j=µ+1

|αjt− αj−1|t
j +

n∑

j=µ+1

(|βjt + βj−1|)t
j

+(|αn| + |βn|)t
n+1

= 2(|α0| + |β0|)t + (|αµ| + |βµ|)t
µ+1 +

k∑

j=µ+1

(αjt− αj−1)t
j +

n∑

j=k+1

(αj−1 − αjt)t
j

+
∑̀

j=µ+1

(βjt − βj−1)t
j +

n∑

j=`+1

(βj−1 − βjt)t
j + (|αn| + |βn|)t

n+1

= 2(|α0| + |β0|)t + (|αµ| + |βµ|)t
µ+1 − αµtµ+1 + 2αkt

k+1 − αntn+1 − βµt
µ+1

+2β`t
`+1 − βnt

n+1 + (|αn| + |βn|)t
n+1

= 2(|α0| + |β0|)t + (|αµ| − αµ + |βµ| − βµ)t
µ+1 + 2(αkt

k+1 + β`t
`+1)

+(|αn| − αn + |βn| − βn)t
n+1

= M.

The result now follows as in the proof of Theorem 2.1.
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