
Piers Rawling
Department of Philosophy
University of Missouri — St. Louis
St. Louis, Missouri 63121-4499
e-mail: sjprawl@umslvma.umsl.edu

Commentary by Robert Gardner

Dr. Rawling states two versions of the two envelopes problem. In both versions, an amount of money is placed in an envelope O, a coin is tossed and twice the amount of money in O is placed in envelope T if the coin comes up heads or half the amount of money in O is placed in envelope O is placed in envelope T if the coin comes up tails. As he observes, if the amount of money in O is 10 (or any known quantity x), then the expected amount in T is 1.25×10 (or $1.25x$ in general). Therefore, in such a situation no "exchange paradox" arises. However, if the amount of money in O is not known (say it is some value 2^n where $n > 0$ is an integer), then he argues that this leads to the exchange paradox in which if one holds envelope O, then s/he deduces that the expected amount in envelope T is greater, and conversely if one holds envelope T, then s/he deduces that the expected amount in envelope O is greater. Since this is clearly contradictory, Dr. Rawling is lead to the conclusion that he must either reject
1. \(P(\text{tails} \mid T \text{ contains } 2^n) = P(\text{heads} \mid T \text{ contains } 2^n) = 0.5, \) or

2. countable additivity.

I propose that a third option exists to resolve the paradox which is perhaps even more elementary.

If we interpret the two envelopes problem to consist of the following events (in order):

1. put an amount of money \(x \) in envelope \(O \),

2. flip a coin,

3. put twice the amount \(x \) in envelope \(T \) if the coin comes up heads, and put half the amount \(x \) in envelope \(T \) if the coin comes up tails,

then the exchange paradox is easily explained. The real problem lies in determining how the amount \(x \) which is to be placed in envelope \(O \) is to be determined. If we are given a probability distribution that describes how the quantity is chosen, then the paradox immediately disappears. Suppose this probability distribution has mean \(\mu \). Then the expected amount in envelope \(O \) is \(\mu \) and the expected amount in \(T \) is \(\frac{5}{4} \mu \). No paradox exists and one should choose envelope \(T \). Notice this can be accomplished over a countable sample space for which the probability of no event is zero and yet we still have countable additivity and finite expected values, as illustrated in the following example.

Example 1. Suppose a positive integer \(n \) is chosen according to the probability distribution \(p(n) = \frac{1}{2^n} \) and \(\frac{3}{2} \) is placed in envelope \(O \). A coin is tossed and an amount placed in envelope \(T \) as described above. Then the expected amount in \(O \) is \(\sum_{n=1}^{\infty} \left(\frac{3}{2} \right)^n \left(\frac{1}{2^n} \right) = 3 \) and the expected amount in \(T \) is \(1.25 \times 3 = \frac{15}{4} \). It is fallacious to argue that the expected value of \(O \) is \(\frac{5}{4} \) times the expected value of \(O \), since the expected value of \(O \) is already determined by the probability distribution.

Of course, one can argue that the game given in Example 1 cannot actually be played since it requires the availability of an unbounded amount of money. In the following example, this problem does not arise.
Example 2. Suppose a positive number between 0 and 1 is chosen according to a uniform distribution (i.e. the probability function if $f(x) = 1$) is placed in envelope O. Then the probability that a value from set $A \subset (0, 1)$ is chosen is $\int_A 1$ (for generality, we take the integration to be Lebesgue integration). The expected amount in O is $\int_{(0,1)} x = \frac{1}{2}$. Following the coin toss as described above, the expected amount in envelope T is $\frac{5}{8}$. Again, there is no paradox and one should choose envelope T. Notice that in this example, we have countable additivity (since Lebesgue integration is countably additive), although the sample space is uncountable.

Notice that one can argue that $eav(T) = \frac{5}{4} eav(O)$. However, as above, it is not valid to calculate $eav(O)$ in terms of $eav(T)$ as $eav(O) = \frac{e}{4} eav(T)$, since $eav(O)$ is given by the probability distribution. In addition, we still have $p(\text{tails} \mid T \text{ contains } x) = p(\text{heads} \mid T \text{ contains } x) = 0.5$.

Robert B. Gardner
Department of Mathematics
Department of Physics and Astronomy
East Tennessee State University
Box 70663
Johnson City, TN 37614
e-mail: gardnerr@etsu.edu

Rawling’s Reply to Gardner

I thank Professor Gardner for his commentary. I shall here respond to him on two issues, largely for purposes of clarification.

Professor Gardner suggests that

(A) \[p(\text{tails} \mid T \text{ contains } \$2n) = p(\text{heads} \mid T \text{ contains } \$2n) = 0.5 \]

is consistent with countable additivity. I demur, given the proviso (which is an initial condition of the problem):

(B) \[p(\text{tails} \mid O \text{ contains } \$2n) = p(\text{heads} \mid O \text{ contains } \$2n) = 0.5. \]