Some Results on the Location of Zeros of Analytic Functions

LIN Ai-guo1, HUANG Bing-jia1, CAO Jian-sheng2, Robert Gardner2
(1-University of Petroleum, Shandong Dongying 2-Department of Mathematics
East Tennessee State University Johnson City, Tennessee 37614)

Abstract: The classical Eneström-Kakeya Theorem states that if \(p(z) = \sum_{n=0}^{\infty} a_n z^n \) is a polynomial such that \(0 \leq a_0 \leq a_1 \leq a_2 \leq \cdots \leq a_n \), then all of the zeros of \(p(z) \) lie in the region \(|z| \leq 1 \) in the complex plane. Many generalizations of the Eneström-Kakeya Theorem exist which put various conditions on the coefficients of the polynomial (such as monotonicity of the moduli of the coefficients). In this paper, we will introduce several results which put conditions on the coefficients of even powers of \(Z \) and on the coefficients of odd powers of \(Z \). As a consequence, our results will be applicable to some analytic functions to which these related results are not applicable.

Keywords: analytic functions; location of zeros; monotonicity

1 Introduction

The classical Eneström-Kakeya Theorem states that if \(p(z) = \sum_{n=0}^{\infty} a_n z^n \) is a polynomial such that \(0 \leq a_0 \leq a_1 \leq a_2 \leq \cdots \leq a_n \), then all of the zeros of \(p(z) \) lie in the region \(|z| \leq 1 \) in the complex plane. Many papers (cf.[2-4]) put various conditions of coefficients of a polynomial and obtained several results about the location of zeros of a polynomial by using monotonicity of moduli of coefficients of a polynomial, others studied the location of zeros of a polynomial by using monotonicity of real and imaginary parts of coefficients of a polynomial. In [1], the authors studied the location of zeros of an analytic function by putting conditions on moduli of coefficients of an analytic function. The following is main result discussed in theorem 6 in [1].

Theorem 1 Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \neq 0 \) be analytic in \(|z| \leq t \). If \(|\arg a_j| \leq \alpha \leq \frac{\pi}{2} \), \(j \in \{0, 1, 2, 3, \cdots \} \) and for finite nonnegative integer \(k \),\(|a_0| \leq |a_1| \leq \cdots \leq t^k a_k \geq t^{k+1} a_{k+1} \geq \cdots \) then \(f(z) \) does not vanish in

\[
|z| < \left(\frac{t}{(2t^k|a_k/a_0| - 1) \cos \alpha + \sin \alpha + \sum_{i=1}^{\infty} \rho |a_i|} \right)
\]

It is well known that analytic functions such as sine, cosine, exponential and logarithm functions have many applications in the practical problems. Finding the locations of zeros of analytic functions is a widely useful topic in complex analysis, since the locations of zeros are the main

Received date: 2003-07-08. Biography: LIN Aiguo (Born in 1964.9), Male, Master Degree Senior Eng
- ner, electro hydraulic protection technology and oil-water treatment technology.
properties of the analytic functions. In this paper, we will put conditions on the coefficients of even powers of \(z \) and on the coefficients of odd powers of \(z \), and give the example to illustrate that our results will be applicable to some analytic functions to which these related results are not applicable.

2 The Main Results and Applications

Motivated by theorem 6 in [1], we put restriction on moduli of odd and even coefficients.

Theorem 2 If \(P(z) = \sum_{\mu=0}^{\infty} a_{\mu} z^{\mu} \) is an analytic function in \(|z| \leq T \) and \(\arg a_j - \beta | \leq \alpha \leq \frac{\pi}{2} \) for \(j \in \{0, 1, 2, \ldots\} \) and for some real \(\beta \) and some nonnegative integers \(k \) and \(t \) and some positive \(t \) such that \(t \leq T \)

\[
|a_0| \leq |a_2| t^2 \leq |a_4| t^4 \leq \cdots \leq |a_{2k}| t^{2k} \leq |a_{2k+2}| t^{2k+2} \leq \cdots \geq \cdots \\
|a_1| \leq |a_3| t^2 \leq |a_5| t^4 \leq \cdots \leq |a_{2t-1}| t^{2t-2} \leq |a_{2t+1}| t^{2t} \geq \cdots \geq \cdots
\]

Then \(p(z) \) does not vanish in \(|z| < R_1 \) where

\[
R_1 = \min \left(\frac{t^2 |a_2|}{M_1}, t \right)
\]

Here

\[
M_1 = |a_0| t \cos \alpha + |a_2| t^2 (1 - \cos \alpha) + 2(|a_{2k}| t^{2k+2} + |a_{2t-1}| t^{2t+1}) \cos \alpha + \sum_{i=2}^{\infty} (|a_i| t^{2i} + |a_{i-2}|) t^i \sin \alpha
\]

Theorem 3 Let \(P(z) = \sum_{\mu=0}^{\infty} a_{\mu} z^{\mu} \) be an analytic function in \(|z| \leq T \) with real coefficients such that

\[
a_0 \geq a_2 \geq a_4 \geq \cdots \geq a_{2t-2} \geq 0 \\
a_1 \leq a_3 \leq a_5 \leq \cdots \leq 0
\]

Then \(p(z) \) does not vanish in \(|z| < \min(R_1, t) \) where

\[
R_1 = \frac{t |a_2|}{M_1}
\]

and

\[
M_1 = |a_0| + 2 |a_1|
\]

We now apply this Theorem 3 to a specific analytic function.

Example 2.1. Consider \(p(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots = \cos z \) which is an analytic function in \(|z| \leq \infty \). Then according to Corollary 3, \(p(z) \) does not vanish in \(|z| < 1 \), that is, all zeros of \(\cos z \) satisfy \(|z| \geq 1 \). We can not apply theorem 1 ([1]) to \(\cos z \) because the coefficients of \(\cos z \) do not satisfy the condition in theorem 1([1]).

In the following theorem, we obtain the following inequality by using generalization of Schwarz's inequality.
Theorem 4. If $P(z) = \sum_{\mu=0}^{\infty} a_\mu z^\mu$ is an analytic function in $|z| \leq T$ and $|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{4}$ for $j \in \{0, 1, 2, \ldots\}$ and for some real β, and some nonnegative integers k and l, there exists some positive t such that $t \leq T$ and

$$|a_0| \leq |a_2|t^2 \leq |a_4|t^4 \leq \cdots \leq |a_{2k}|t^{2k} \geq |a_{2k+2}|t^{2k+2} \geq \cdots \geq \cdots$$

$$|a_1| \leq |a_3|t^2 \leq |a_5|t^4 \leq \cdots \leq |a_{2l-1}|t^{2l-2} \geq |a_{2l+1}|t^{2l} \geq \cdots \geq \cdots$$

Then $p(z)$ does not vanish in $|z| < R_1$ where

$$R_1 = \min \left(t^{2/3} \left| \frac{a_0}{M_1} \right| t^2, t \right)$$

Here

$$M_1 = -|a_0|t \cos \alpha + \left| a_1 \right| t^2 (1 - \cos \alpha) + 2 \left(|a_2| t^{2k+2} + |a_{2l-1}| t^{2l+1} \right) \cos \alpha + 2 \sum_{i=2}^{\infty} \left(|a_i| t^2 + |a_{i-2}| t^4 \right) \sin \alpha$$

As inspired from [2] by putting restriction of real and imaginary parts of analytic function, we get the following theorem.

Theorem 5. Let $P(z) = \sum_{\mu=0}^{\infty} a_\mu z^\mu$ be an analytic function in $|z| \leq T$ and $Re(a_j) = \alpha_j$, $Im(a_j) = \beta_j$ and for some nonnegative integers k, l, p and q, there exists a positive t such that $t \leq T$ and

$$a_0 \leq a_2 t^2 \leq a_4 t^4 \leq \cdots \leq a_{2k} t^{2k} \geq a_{2k+2} t^{2k+2} \geq \cdots \geq \cdots$$

$$a_1 \leq a_3 t^2 \leq a_5 t^4 \leq \cdots \leq a_{2l-1} t^{2l-2} \geq a_{2l+1} t^{2l} \geq \cdots \geq \cdots$$

$$\beta_0 \leq \beta_2 t^2 \leq \beta_4 t^4 \leq \cdots \leq \beta_{2k} t^{2k} \leq \beta_{2k+2} t^{2k+2} \geq \cdots \geq \cdots \geq \cdots$$

Then $p(z)$ does not vanish in $|z| < R_1$ where

$$R_1 = \min \left(\frac{\left| a_0 \right|}{M_1}, t \right)$$

Here

$$M_1 = \left(|a_1| + |\beta_1| \right) t - (\alpha_1 + \beta_1) t - (\alpha_0 + \beta_0) + 2 \left(a_2 t^{2k} + a_{2l-1} t^{2l-1} + \beta_2 t^{2q} + \beta_{2q} t^{2l-1} \right)$$

The following inequality of analytic function is obtained by using generalization of Schwarz's inequality and monotony of real and imaginary parts.

Theorem 6. Let $P(z) = \sum_{\mu=0}^{\infty} a_\mu z^\mu$ be an analytic function in $|z| \leq T$ and $Re(a_j) = \alpha_j$, $Im(a_j) = \beta_j$ and for some nonnegative integers k, l, p and q, there exists a positive t such that $t \leq T$ and

$$a_0 \leq a_2 t^2 \leq a_4 t^4 \leq \cdots \leq a_{2k} t^{2k} \geq a_{2k+2} t^{2k+2} \geq \cdots \geq \cdots$$

$$a_1 \leq a_3 t^2 \leq a_5 t^4 \leq \cdots \leq a_{2l-1} t^{2l-2} \geq a_{2l+1} t^{2l} \geq \cdots \geq \cdots$$

$$\beta_0 \leq \beta_2 t^2 \leq \beta_4 t^4 \leq \cdots \leq \beta_{2k} t^{2k} \geq \beta_{2k+2} t^{2k+2} \geq \cdots \geq \cdots \geq \cdots$$
\[\beta_1 \leq \beta_2 t^2 \leq \beta_3 t^4 \leq \cdots \leq \beta_{2q-1} t^{2q-2} \geq \beta_{2q+1} t^{2q} \geq \cdots \geq 0 \]

Then \(p(z) \) does not vanish in \(|z| \leq R \), where

\[R_1 = \min \left(\frac{t^2 |a_1|(|a_0| - M_1) + (t^4 |a_1|^2(|a_0| - M_1)^3 + 4M_1^2 |a_0|^4)}{2M_1^2}, t \right) \]

Here

\[M_1 = (|a_1| + |\beta_1|) t - (\alpha_1 + \beta_1) t - (\alpha_0 + \beta_0) + 2(\alpha_{2k+1} t^{2k} + \alpha_{2k+2} t^{2k+2} + \beta_{2k+2} t^{2k+2} + \beta_{2k+1} t^{2k+1}) \]

3 Proof of the Main Results

We need the following which is the generalization of Schwarz's inequality to prove the main theorems.

Lemma 1 Let \(f(z) \) be analytic in \(|z| < R \), \(f(0) = 0 \), \(f'(z) = b \), and \(|f(z)| \leq M \) for \(|z| = R \), then for \(|z| \leq R \)

\[|f(z)| \leq \frac{M|z|}{R^2} \frac{|M| + R^2|b|}{M + |z||b|} \]

The following Lemma is due to Asiz and Mohammad [1].

Lemma 2 Let \(P(z) = \sum_{\mu=0}^{n} a_\mu z^\mu \) be analytic in \(|z| \leq t \) such that \(|\arg a_j - \beta| \leq \alpha \leq \frac{\pi}{2} \) for \(j \in \{0, 1, 2 \cdots, n\} \) and for some real \(\beta \), and positive \(t \) and nonnegative integer \(k \),

\[|a_0| \leq |a_1| t^{\beta} \leq |a_2| t^{2\beta} \leq \cdots \leq |a_k| t^{k\beta} \geq |a_{k+1}| t^{(k+1)\beta} \geq \cdots \geq |a_n| t^{n\beta} \]

Then for \(j \in \{1, 2, 3, \cdots, n\} \)

\[|a_j - a_{j-1}| \leq (t|a_j - |a_{j-1}|) \cos \alpha + (t|a_j| + |a_{j-1}|) \sin \alpha. \]

Proof of Theorem 2

Consider the following analytic function \(g(z) \)

\[g(z) = (t^2 - z^2)p(z) = t^2 a_0 + a_1 t^2 z + \sum_{i=2}^{\infty} (a_i t^2 - a_{i-2}) z^i = t^2 a_0 + G_1(z) \]

on \(|z| = t \)

\[|G_1(z)| \leq |a_1| t^3 + \sum_{i=2}^{\infty} |a_i| t^2 - a_{i-2}| t^i \]

By using Lemma 1 in the above, we obtain

\[|G_1(z)| \leq |a_1| t^3 + \sum_{i=2}^{\infty} (|a_i| t^2 - a_{i-2}|) \cos \alpha + (|a_i| t^2 + |a_{i-2}|) \sin \alpha) t^i \]

\[\leq -|a_0| t^2 \cos \alpha + |a_1| t^3 (1 - \cos \alpha) + 2(|a_{2k+2} t^{2k+2} + a_{2k+1} t^{2k+1}) \cos \alpha + \sum_{i=2}^{\infty} (|a_i| t^2 + |a_{i-2}|) t^i \sin \alpha = M_1 \]
Then it follows from Schwarz's lemma, therefore

\[|G_1(z)| \leq \frac{M_1|z|}{t} \quad \text{for} \quad |z| \leq t \]

Which implies

\[
\begin{align*}
|g(z)| &= |t^2 a_0 + G_1(z)| \\
&\geq t^2|a_0| - |G_1(z)| \\
&\geq t^2|a_0| - \frac{M_1|z|}{t} \quad \text{for} \quad |z| \leq t
\end{align*}
\]

Therefore, if \(|z| \leq R_1 = \min\left\{ \frac{t^2|a_0|}{M_1}, t \right\} \), then \(g(z) \neq 0\) and so \(p(z) \neq 0\) that is, \(p(z)\) does not vanish in \(|z| \leq R_1\).

Proof of Theorem 4

Consider the following analytic function

\[g(z) = (t^2 - z^2)p(z) = t^2 a_0 + a_1 t^2 z + \sum_{i=2}^{\infty} (a_i t^2 - a_{i-2}) z^i = t^2 a_0 + G_1(z) \]

on \(|z| = t\)

\[|G_1(z)| \leq |a_1| t^3 + \sum_{i=2}^{\infty} |a_i t^2 - a_{i-2}| t^i \]

By using the above Lemma 1, we obtain

\[
|G_1(z)| \leq |a_1| t^3 + \sum_{i=2}^{\infty} [((|a_i| t^2 - |a_{i-2}||) \cos \alpha + (|a_i| t^2 + |a_{i-2}|) \sin \alpha)] t^i
\]

\[
\leq - |a_0| t^2 \cos \alpha + |a_1| t^3 (1 - \cos \alpha) + 2(|a_2| t^{2k+2} + |a_{2l-1}| t^{2l+1}) \cos \alpha + \\
+ \sum_{i=2}^{\infty} (|a_i| t^2 + |a_{i-2}|) t^i \sin \alpha t^i = M_1
\]

Then it follows from Lemma 2, therefore

\[|G_1(z)| \leq \frac{M_1|z|}{t^2} \frac{M_1|z| + t^4|a_1|}{M_1 + |z||a_1| t^2} \quad \text{for} \quad |z| \leq t \]

Which implies

\[
\begin{align*}
|g(z)| &= |t^2 a_0 + G_1(z)| \\
&\geq t^2|a_0| - |G_1(z)| \\
&\geq t^2|a_0| - \frac{M_1|z|}{t^2} \frac{M_1|z| + t^4|a_1|}{M_1 + |z||a_1| t^2} \quad \text{for} \quad |z| \leq t
\end{align*}
\]

Therefore, if \(|z| \leq R_1 = \min\left\{ \frac{t^2|a_0|}{M_1}, t \right\} \), then \(g(z) \neq 0\) and so \(p(z) \neq 0\) that is, \(p(z)\) does not vanish in \(|z| \leq R_1\).

Proof of Theorem 5
Proof. We consider the following analytic function

$$g(z) = (t^2 - z^2)p(z) = t^2a_0 + a_1t^2z + \sum_{i=2}^{\infty}(a_it^2 - a_{i-2})z^i = t^2a_0 + G_1(z)$$

on $|z| = t$

$$|G_1(z)| \leq |a_1|t^3 + \sum_{i=2}^{\infty}|a_it^2 - a_{i-2}|t^i$$

$$\leq (|a_1| + |\beta_1|)t^3 + \sum_{i=2}^{\infty}(|a_it^2 - a_{i-2}|t^i + |\beta_i t^2 - \beta_{i-2}|t^i)$$

$$\leq ((|a_1| + |\beta_1|)t^3 - (a_1 + \beta_1)t^3 - (a_0 + \beta_0)t^2 + 2a_2t^{2h+2} + a_{2l-1}t^{2l+1} + \beta_2t^{2s+2} + \beta_{2q-1}t^{2q+1})$$

$$= t^2M_1$$

We apply Schwarz's theorem [5, p.168] to $G_1(z)$, we get

$$|G_1(z)| \leq \frac{t^2M_1|z|}{t} = tM_1|z|, \text{ for } |z| \leq t$$

Which implies

$$|g(z)| = |t^2a_0 + G_1(x)| \geq t^2|a_0| - |G_1(z)| \geq t^2|a_0| - tM_1|z| \text{ for } |z| \leq t$$

Hence, if $|z| \leq R_1 = \min \left(\frac{|a_0|}{M_1}, t \right)$, then $g(z) \neq 0$ and so $p(z) \neq 0$. That is, $p(z)$ does not vanish in $|z| \leq R_1$.

Proof of Theorem 6

Proof. Consider the following analytic function

$$g(z) = (t^2 - z^2)p(z) = t^2a_0 + a_1t^2z + \sum_{i=2}^{\infty}(a_it^2 - a_{i-2})z^i = t^2a_0 + G_1(z)$$

on $|z| = t$

$$|G_1(z)| \leq |a_1|t^3 + \sum_{i=2}^{\infty}|a_it^2 - a_{i-2}|t^i$$

$$\leq (|a_1| + |\beta_1|)t^3 + \sum_{i=2}^{\infty}(|a_it^2 - a_{i-2}|t^i + |\beta_i t^2 - \beta_{i-2}|t^i)$$

$$\leq ((|a_1| + |\beta_1|)t^3 - (a_1 + \beta_1)t^3 - (a_0 + \beta_0)t^2 + 2a_2t^{2h+2} + a_{2l-1}t^{2l+1} + \beta_2t^{2s+2} + \beta_{2q-1}t^{2q+1})$$

$$= t^2M_1$$

We apply Lemma 2 to $G_1(z)$, we get

$$|G_1(z)| \leq \frac{M_1|z|(M_1|z| + t^2|a_1|)}{M_1 + |z||a_1|}, \text{ for } |z| \leq t$$

Which implies

$$|g(z)| = |t^2a_0 + G_1(z)| \geq t^2|a_0| - |G_1(z)| \geq t^2|a_0| - \frac{M_1|z|(M_1|z| + t^2|a_1|)}{M_1 + |z||a_1|} \text{ for } |z| \leq t$$

Hence, if $|z| \leq R_1 = \min \left(\frac{t^2|a_0|(|a_0| - M_1)}{2M_1}, \frac{t^2|a_0|^2(|a_0| - M_1)^2 + 4M_1t^2|a_0|}{2M_1} \right)$, then $g(z) \neq 0$ and so $p(z) \neq 0$.

That is, $p(z)$ does not vanish in $|z| \leq R_1$.
References:
[3] Atif Abueida, Robert B. Gardner Some results on the location of zeroes of a polynomial, Submitted,

Forced Oscillation of Systems of Nonlinear Neutral Parabolic Partial Functional Differential Equations

YANG Jun, WANG Chunyan, LI Jing

(Department of Mathematics, Yanshan University, Qinhuangdao 066004)

Abstract: This paper studies the systems of nonlinear neutral parabolic partial functional differential equations with continuous distributed deviating arguments, Sufficient conditions are obtained for the forced oscillation of solutions of the systems.

Keywords: parabolic partial functional equations; nonlinear neutral type; continuous distributed deviating arguments; systems; the forced oscillation