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1. INTRODUCTION

Note. In these notes, we “compare and contrast” the approach to Lebesgue

measure taken in H.L. Royden and P.M. Fitzpatrick’s Real Analysis (4th

Edition), Prentice Hall (2010) to the approach taken in A.M. Bruckner, J.B.

Bruckner, and B.S. Thomson’s Real Analysis, Prentice Hall (1997). ETSU’s

Real Analysis 1 (MATH 5210) uses the Royden and Fitzpatrick text and de-

fines a set to be Lebesgue measurable if it satisfies the Carathéodory splitting

condition. Bruckner, Bruckner, and Thomson define inner and outer mea-

sure and define a set to be Lebesgue measurable if its inner measure equals its

outer measure. Henri Lebesgue himself used inner and outer measure in his

foundational work of 1902. It was several years later that the Carathéodory

splitting condition followed (in 1914). We show in these notes that the two

approaches are equivalent.

Note. In graduate Real Analysis 1 (MATH 5210), we follow Royden and

Fitzpatrick’s definition of outer measure of a set of real numbers E as

µ∗(E) = inf

{ ∞∑
k=1

`(Ik)

∣∣∣∣∣ E ⊂ ∪∞k=1Ik, and each Ik is an open interval

}
,

where `(I) denotes the length of interval I. In this way, the outer measure

of every set is defined since every set off nonnegative real numbers has an

infimum. HEY, it’s part of the definition of R!
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Note. We can then show that µ∗ is:

(1) translation invariant (µ∗(E + x) = µ∗(E) for all x ∈ R),

(2) monotone (A ⊂ B implies µ∗(A) ≤ µ∗(B)),

(3) the outer measure of an interval is its length: µ∗(I) = `(I) for all intervals

I ⊂ R, and

(4) countably subadditive µ∗

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

µ∗(Ek).

Note. We want countable additivity:

µ∗

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ∗(Ek) when Ei ∩ Ej = ∅ for i 6= j.

To this end, the Carathéodory Condition or the splitting condition on set A

is introduced:

µ∗(X) = µ∗(X ∩ A) + µ∗(X \ A) for all X ⊂ R.

Royden and Fitzpatrick then defines a set A to be Lebesgue measurable if it

satisfies the splitting condition and defines its Lebesgue measure as µ∗(A).

Note. It can be shown that Lebesgue measure is countably additive and

that the Lebesgue measurable sets M form a σ-algebra (i.e., a collection of

sets closed under countable unions and complements). Hence, the Borel sets

(the σ-algebra generated by open intervals) are measurable.

Note. However, it is unclear as to why the splitting condition is the desired

condition to yield the property of measurability. In this presentation, we give

an alternate definition of measurability which is more natural but, ultimately,

equivalent to the definition of Royden and Fitzpatrick.
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2. Fσ and Gδ Sets

Note. Recall that a set of real numbers is open if and only if it is a countable

disjoint union of open intervals. Inspired by this result, we classify other types

of sets which can be described in terms of open and closed sets.

Definition. A set A of subsets of some point set X is a σ-algebra (or a Borel

field) if

(1) if A1, A2, A3, · · · ∈ A then ∪∞i=1Ai ∈ A,

(2) if A ∈ A then X \ A = Ac ∈ A, and

(3) if A1, A2, A3, · · · ∈ A then ∩∞i=1Ai ∈ A.

Note. By DeMorgan’s Laws, part (3) of the above definition is redundant.

We can simplify the definition to: “A σ-algebra is a collection of sets closed

under countable unions and complements.”

Theorem 2.1. Given any collection of sets C of subsets of point set X,

there is a smallest σ-algebra that contains C. That is, there is a σ-algebra A
containing C such that if B is any σ-algebra containing C, then A ⊂ B.

Proof. This is Proposition 1.13 in Royden and Fitzpatrick. The construction

of A involves intersecting all algebras which contains C.

Definition. The collection B of Borel sets is the smallest σ-algebra contain-

ing which contains all of the open sets.
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Note. The idea of generating a σ-algebra is used in Royden and Fitzpatrick’s

study of Lebesgue measurable sets and follows this outline:

(1) The open sets are measurable,

(2) If A1, A2, A3, · · · are measurable, then ∪∞i=1Ai is measurable, and

(3) If A is measurable, then Ac is measurable.

(2) and (3) together imply that the measurable sets form a σ-algebra. (1)

then implies that the Borel sets are measurable.

Note. Part of my interest lies in trying to find out what a set of real numbers

“looks like.” For example, we know that an open set of real numbers is a

countable, disjoint union of open intervals. To this end, we define certain

classes of sets. Think of the open sets as a starting point. We know that

a countable union of open sets is open and a finite intersection of open sets

is open. So to create a new collection of sets based on open sets, we could

explore what results from a countable intersection of open sets (and, similarly,

countable unions of closed sets).

Definition. A set which is a countable intersection of open sets is a Gδ-set.

A set which is a countable union of closed sets is an Fσ-set.

Note. One explanation for the above notation, is the following (this is

Wikipedia’s current [3/12/2016] story). In German, G if for Gebiet (“area”)

and δ is for Durchschnitt (“intersection”). In French, F is for fermé (“closed”)

and σ is for somme (“union”).
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Note. By DeMorgan’s Laws, we see that the complement of a Gδ-set is an

Fσ-set (and conversely). Since every open interval is a countable union of

closed sets

(a, b) =
∞⋃

n=1

[
a +

1

n
, b− 1

n

]
,

we see that every open set is Fσ (and so every closed set is Gδ).

Notice. We can, in a sense, say what a Gδ-set “looks like”—it is a countable

intersection of countable unions of open intervals!

Note. Next, we introduce another “layer” of sets by considering countable

unions and intersections again.

Definition. A set which is a countable union of Gδ sets is a Gδσ-set. A set

which is a countable intersection of Fσ-sets is an Fσδ-set.

Note. Continuing in this fashion, alternating countable intersections and

countable unions, we generate the following classes of sets:

Gδ, Gδσ, Gδσδ, Gδσδσ, . . .

Fσ, Fσδ, Fσδσ, Fσδσδ, . . .

Since the “G chain” is based on open sets and the “F chain” is based on closed

sets, we see that all of these types of sets are in the σ-algebra generated by

the open sets—that is, they are all Borel sets.
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Note. Tangible applications of some of the “low order” Borel sets include

the following two problems from Royden and Fitzpatrick:

1.56. Let f be a real-valued function defined for all real numbers. Then the

set of points at which f is continuous is a Gδ-set.

1.57. Let 〈fn〉 be a sequence of continuous functions defined on R. Then the

set C of points where this sequence converges is an Fσδ set and the set

of points where this sequence diverges is a Gδσ-set.

Note. One can show (I am not that one. . . yet!) that there are Borel sets

which are neither in the G chain nor in the F chain. So, although we know

what the G chain sets and the F chain sets look like, we still don’t have a

grasp on what general the Borel sets look like!

Note. We adopt a notation consistent with the assumption of the Contin-

uum Hypothesis: |P(R)| = ℵ2. According to Corollary 4.5.3 of Iner Rana’s

An Introduction to Measure and Integration (2nd Edition, A.M.S. Graduate

Studies in Mathematics, Volume 45, 2002), the cardinality of the Borel sets

is |B| = c, the cardinality of the continuum. But then, under the Continuum

Hypothesis, |B| = ℵ1. So, with regard to P(R), “very few” sets are Borel

sets.

Note. We see in Real Analysis 1 that there are |P(R)| = ℵ2 measurable sets

(in fact, we can take the power set of the Cantor set and see that there are

this many sets of measure 0). There are also |R(R)| = ℵ2 nonmeasurable

sets (by taking a nonmeasurable set from [1, 2] and unioning it with each of

the measurable subsets of the Cantor set). Therefore “very few” measurable

sets are Borel sets.
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3. Outer and Inner Measure

Note. The following notes, definitions, and notation are based largely on

Real Analysis by A.M. Bruckner, J.B. Bruckner, and B.S. Thomson, Prentice

Hall 1997.

Definition. For any open interval I = (a, b), define λ(I) = b− a.

Recall. A set of real numbers G is open if and only if it is a countable

disjoint union of open intervals:

G = ∪∞k=1Ik where Ij ∩ Ik = ∅ if j 6= k

where each Ik is an open interval.

Definition. For the above open set of real numbers G = ∪∞k=1Ik define

λ(G) =
∞∑

k=1

λ(Ik).

If one of the Ik is unbounded, define λ(G) = ∞ and if G = ∅ define λ(G) = 0.

Definition. Let E be a bounded closed set with a = glb(E) and b = lub(E)

(that is, [a, b] is the smallest closed interval containing E). Define

λ(E) = b− a− λ((a, b) \ E).

Notice. If E is closed, then (a, b) \ E = (a, b) ∩ Ec is open. Also, we get by

rearranging:

λ(E) + λ((a, b) \ E) = b− a.
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Note. We have λ defined on any open set or any closed and bounded set.

We now use λ defined on the open sets to define outer measure, identical to

Royden and Fitzpatrick’s approach.

Definition. Let E be an arbitrary subset of R. Let

λ∗(E) = inf{λ(g) | E ⊂ G, G is open}.

Then λ∗(E) is called the Lebesgue outer measure of E.

Note. By definition, for open G, λ∗(G) = λ(G).

Theorem 3.1. For every E ⊂ R, there exists a Gδ set G such that E ⊂ G

and λ∗(E) = λ∗(G). G is called a measurable cover for E.

Proof. This is a result in Royden and Fitzpatrick (Theorem 2.11(ii)).

Note. Since for open G (with the notation from above), λ(G) =
∑∞

k=1 λ(Ik),

we immediately have

λ∗(E) = inf

{ ∞∑
k=1

λ(Ik) | E ⊂
∞⋃

k=1

Ik, each Ik an open interval

}
.

This is the same as Royden and Fitzpatrick’s definition of outer measure µ∗.

As previously mentioned, we show in Real Analysis 1 that λ∗ = µ∗ is (1)

translation invariant, (2) monotone, (3) the outer measure of an interval is

its length, and (4) countably subadditive.
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Note. It would seem that λ∗ should do for a measure. However, λ∗ is not

countably additive. In fact, there are disjoint sets E1 and E2 such that

λ(E1 ∪ E2) = λ∗(E1) + λ∗(E2)

does not hold. Specific examples of such sets are seen with the construction of

a nonmeasurable set (climaxing in the “offensive” Banach-Tarski Paradox).

Definition. Let E be an arbitrary subset of R. Let

λ∗(E) = sup{λ(F ) | F ⊂ E, F is compact}.

Then λ∗(E) is called the Lebesgue inner measure of E.

Note. By definition, for compact F , λ∗(F ) = λ(F ).

Note. Similar to the proofs for µ∗, we can show that λ∗ is:

(1) translation invariant (λ∗(E + x) = λ∗(E) for all x ∈ R),

(2) monotone (A ⊂ B implies λ∗(A) ≤ λ∗(B)),

(3) the inner measure of an interval is its length: λ∗(I) = `(I) for all intervals

I ⊂ R, and

(4) countably superadditive

λ∗

( ∞⋃
k=1

Ek

)
≥

∞∑
k=1

λ∗(Ek).

Theorem 3.2. For every E ⊂ R, there exists an Fσ set F such that F ⊂ E

and λ∗(F ) = λ∗(E). F is called a measurable kernal of g.
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Proof. First, suppose λ∗(E) = m < ∞. Since

λ∗(E) = sup{λ(F ) | F ⊂ E, F is compact},

then by definition of supremum, for all εk = 1/k, k ∈ N, there is a compact

set Fk such that m ≥ λ(Fk) > m− 1/k. Consider the set F = ∪∞k=1Fk. Since

each Fk is compact (and therefore closed), then F is a countable union of

closed sets—i.e., F is an Fσ set. Also, Fk ⊂ F ⊂ E for all k ∈ N. Therefore,

by monotonicity of λ∗:

m− 1

k
= λ∗(Fk) ≤ λ∗(F ) ≤ λ∗(E) = m

for all k ∈ N, and hence λ∗(F ) = λ∗(E).

Second, suppose λ∗(E) = ∞. Then for all k ∈ N there is a compact set

Fk such that λ∗(Fk) > k from the supremum definition of λ∗(E). Again, take

F = ∪Fk and F is an Fσ set with

λ∗(F ) = λ∗(∪Fk) ≥
∑

λ∗(Fk) = ∞ = λ∗(E)

where the inequality part follows from the countable superadditivity of λ∗

Theorem 3.3. If F is a compact set, then λ∗(F ) = λ∗(F ). In the next

section, we will see that this is the definition of measurable. So every compact

set F is measurable.

Proof. Let [a, b] be the smallest interval containing F . We know that (a, b) =

((a, b) \ F ) ∪ F and since λ∗ is countably additive,

λ∗((a, b)) = λ∗(((a, b) \ F ) ∪ F ) = λ∗((a, b) \ F ) + λ∗(F )

or

λ∗(F ) = λ∗((a, b))− λ∗((a, b)\) = b− a− λ∗((a, b) \ F ) = λ(F ) = λ∗(F ).

So F is measurable.
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Note. We cannot use intervals (directly) in the definition of inner measure,

since set E may not have any subsets which are intervals (consider Q or

R \Q). However, every set has a compact subset (since, trivially, the empty

set is compact and has outer measure 0).

Theorem 3.4. Let [a, b] be the smallest interval containing set E. Then

λ∗(E) = b− a− λ∗([a, b] \ E).

Proof. First, let F ⊂ E be compact. Then [a, b] \ F is open and [a, b] \E ⊂
[a, b] \ F. then

λ(F ) = b− a− λ([a, b] \ F ) (definition of λ for a compact set)

≤ b− a− inf{λ(G) | [a, b] \ E ⊂ G, G is open}

(definition of infimum since [a, b] \ F

is one specific such open G)

= b− a− λ∗([a, b] \ E) (definition of λ∗).

Since F ⊂ E was arbitrary, taking a suprema over all such F yields

λ∗(E) ≤ b− a− λ∗([a, b] \ E).

We now need to reverse this inequality.

Second, let [a, b] \E ⊂ G where G is open. Then [a, b] \G is compact and

[a, b] \G ⊂ E. Then

b− a− λ(G) ≤ b− a− inf{λ(G) | [a, b] \ E ⊂ G, G is open}

(definition of infimum)

= b− a− λ∗([a, b] \ E) (definition of λ∗),
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or

λ(E) ≥ λ([a, b] \G) (definition of supremum since [a, b] \G

is one specific such compact set)

= (d− c)− λ((c, d) \ ([a, b] \G))

where [c, d] is the smallest closed interval containing [a, b] \G)

≥ (b− a)− λ((c, d) \ ([a, b] \G)) (since [c, d] ⊂ [a, b]).

If a, b ∈ E, then (c, d) = (a, b) and WLOG we have G ⊂ (a, b), so

(c, d) \ ([a, b] \G) = (a, b) \ ([a, b] \G) = (a, b) \ ((a, b) \G) = G.

Then

λ∗(E) ≥ b− a− λ((c, d) \ ([a, b] \G)) = b− a− λ(G)
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where G is open and [a, b]\E ⊂ G. Since G was arbitrary (we have G ⊂ (a, b)

WLOG), taking the infimum over all such G gives

λ∗(E) ≥ b− a− λ∗([a, b] \ E).

Therefore when a, b ∈ E (i.e., when E contains its lub and glb),

λ∗(E) = b− a− λ∗([a, b] \ E).

If a is not in E, we see that [a, b] \E differs from [a, b] \ (E ∪ {a}) by only

one point. Hence, from an ε-argument, we can show that λ∗([a, b] \ E) =

λ∗([a, b] \ (E ∪ {a})) (and similarly if neither a nor b is in E) and the result

follows for arbitrary E.

Note. We will define a set to be Lebesgue measurable by always appealing

to bounded portions of the set. Therefore the equation

λ∗(E) = b− a− λ∗([a, b] \ E)

has some implication even for unbounded sets. The important observation

here is that even if we approach Lebesgue measure from an inner mea-

sure/outer measure perspective, we see that the inner measure is ultimately

dependent only on the outer measure. Therefore, there is a degree of re-

dundance in the introduction of inner measure at least as long as the above

equation holds (and this is where the Carathéodory splitting condition arises

in Royden and Fitzpatrick’s development).
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4. Lebesgue Measurability

Definition Let E be a bounded subset of R, and let λ∗(E) and λ∗(E) denote

the outer and inner measures of E. If

λ∗(E) = λ∗(E)

then we say that E is Lebesgue measurable with Lebesgue measure λ(E) =

λ∗(E). If E is unbounded, we say that E is Lebesgue measurable if E ∩ I is

Lebesgue measurable for every finite interval I and again write λ(E) = λ∗(E).

Note. Henri Lebesgue (1875–1941) was the first to crystallize the ideas of

measure and the integral studied in Part 1 of our Real Analysis 1 class. In

his doctoral dissertation, Intégrale, Longueur, Aire (“Integral, Length, Area”)

of 1902, he presented the definitions of inner and outer measure equivalent

to the approach of Bruckner, Bruckner, and Thomson given here. His def-

inition of “measurable” is the same as the previous definition. Lebesgue

published his results in 1902, with the same title as his dissertation, in An-

nali di Matematica Pura ed Applicata, Series 3, VII(4), 231–359. You can

find this online (in French, or course) on Archive.org (accessed 4/21/2021).

Carathéodory introduced his splitting condition in 1914. His approach is to

outer measure and measurability in a more abstract setting. His results ap-

peared in Über das lineare Mass von Punktmengen- eine Verallgemeinerung

des Längenbegriffs [“About the linear measure of sets of points - a gener-

alization of the concept of length”] Nachrichten von der Gesellschaft der

Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse [“News of

the Society of Sciences in Göttingen , Mathematics and Physical Class”]

(1914), 404–426. Carathéodory’s original paper can be found online on

Göttinger Digitalisierungszentrum Ein Service der SUB Göttingen (accessed

4/21/2021).
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Theorem 4.1. λ∗ is monotone. That is, if E1 ⊂ E2 then λ∗(E1) ≤ λ∗(E2).

Proof. Let Ea ⊂ E2. Since every compact set F which is a subset of q is

also a subset of E2, then

λ∗(E1) = sup{λ(F ) | F ⊂ E1, F compact}

≤ sup{λ(F ) | F ⊂ E2, F compact} = λ∗(E2)

(since the second supremum is taken over a larger collection of real numbers

than the first supremum).

Theorem 4.2. If {Ek} is a disjoint sequence of subsets of R, then

λ∗

( ∞⋃
k=1

Ek

)
≥

∞∑
k=1

λ∗(Ek).

This property is called countable superadditivity.

Proof. Let ε > 0. By the definition of λ∗(Ek) in terms of a supremum, for

each k ∈ N there exists a compact set Fk ⊂ Ek such that

λ∗(Ek)−
ε

2k
≤ λ∗(Fk) = λ(Fk),

a property of supremum. Next,

λ∗

(
n⋃

k=1

Ek

)
≥ λ∗

(
n⋃

k=1

Fk

)
(by the monotonicity of λ∗)

= λ

(
n⋃

k=1

Fk

)
(since each ∪Fk is compact and so measurable)

16



=
n∑

k=1

λ(Fk) (since λ is countably additive)

≥
n∑

k=1

(
λ∗(Ek) +

ε

2k

)
=

n∑
k=1

λ∗(Ek) + ε

(
n∑

k=1

1

2k

)
This holds for all n, so

λ∗

( ∞⋃
k=1

Ek

)
≥

∞∑
k=1

λ∗(Ek) + ε.

Next, ε was arbitrary, so

λ∗

( ∞⋃
k=1

Ek

)
≥

∞∑
k=1

λ∗(Ek).

Note. If E ⊂ R is a bounded measurable set, and [a, b] is the smallest

interval containing E, then

λ∗(E) = (b− a)− λ∗([a, b] \ E) by Theorem 3.4

or

λ∗(E) = λ∗([a, b])− λ∗([a, b] \ E)

or

λ∗([a, b]) = λ∗(E) + λ∗([a, b] \ E). (1)

Recall the Carathéodory splitting condition from Royden and Fitzpatrick:

λ∗(X) = λ∗(A) + λ∗(X \ A).
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Equation (1) is simply the splitting condition applied to the set A = [a, b]!

If E is measurable and unbounded, then the condition of Lebesgue measur-

ability implies that the splitting condition must be satisfied for all intervals.

(By the additivity of λ∗, we can replace interval [a, b] with any interval and

say the same thing about unbounded mearsurable sets.)

Note. Clearly, the splitting condition implies (1) and so Royden and Fitz-

patrick’s approach implies the inner/outer measure approach to defining

Lebesgue measure. We now need to show that the inner/outer measure ap-

proach implies Royden and Fitzpatrick’s approach and the Carathéodory

splitting condition. This is accomplished in the following theorem.

Theorem 4.3. Let E ⊂ R is a bounded measurable set (i.e., λ∗(E) = λ∗(E))

and let [a, b] be the smallest interval containing E. Then for any set A ⊂ R
we have

λ∗(A) = λ∗(A ∩ E) + λ∗(A \ E).

Proof. Let E ⊂ R be a bounded measurable set and let [a, b] be the smallest

interval containing set E. Let A be any subset of [a, b]. By Theorem 3.1, there

is a Gδ set G ⊃ A (called a measurable cover of A) such that λ∗(G) = λ∗(A).

Since A ⊂ [a, b] and set G is Gδ, then WLOG we have G ⊂ [a, b]: Since

[a, b] =
∞⋂

n=1

[
a +

1

n
, b− 1

n

]
is Gδ and, if G is not a subset of [a, b], the set

G ∩ [a, b] is a Gδ subset of [a, b] and A ⊂ G ∩ [a, b]. By monotonicity of λ∗,

we have

λ∗(A) ≤ λ∗(A ∩ E) + λ∗(A \ E).

So we only need to show that

λ∗(A) ≥ λ∗(A ∩ E) + λ∗(A \ E).
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Notice that

[a, b]\G = [a, b]∩Gc = ([a, b]∪([a, b]\E))∩Gc = ([a, b]∩Gc)
⋃

(([a, b]\E)∩Gc)

= ([a, b] \G)
⋃

(([a, b] \ E) \G)

and so by monotonicity of λ∗

λ∗(E \G) + λ∗(([a, b] \ E) \G) ≥ λ∗([a, b] \G). (1)

Since we know from Royden and Fitzpatrick that G is measurable (in the

sense of Royden and Fitzpatrick) and so G satisfies the splitting condition

and

λ∗(E) = λ∗(E ∩G) + λ(E \G)) (2)

(the splitting condition on G applied to set E) and

λ∗([a, b] \ E) = λ∗(([a, b] \ E) ∩ ([a, b] \G)) + λ∗(([a, b] \ E) \ ([a, b] \G))

(splitting condition on [a, b] \G applied to set [a, b] \ E)

= λ∗(([a, b] \G) \ e) + λ∗(G \ E) since G ⊂ [a, b]. (3)

Since E is measurable, by countable additivity

λ∗([a, b]) = λ∗([a, b] ∩ E) + λ∗([a, b] \ E) = λ∗(E) + λ∗([a, b] \ E).

Therefore

λ([a, b]) = λ∗([a, b]− λ∗(E) + λ∗([a, b] \ E)

= (λ∗(E ∩G) + λ∗(E \G) + λ∗([a, b] \ E)

since from G is measurable, from (2)

= λ∗(E ∩G) + λ∗(E \G) + (λ∗(([a, b] \G) \ E) + λ∗(G \ E))

since [a, b] \ is measurable, from (3)
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= (λ∗(E ∩G) + λ∗(G \ E)) + (λ∗(E \G) + λ∗(([a, b] \G) \ E))

≥ λ∗(G) + λ∗([a, b] \G) by monotonocity, since G = (E ∩G) ∪ (G \ E)

and (([a, b] \G) \ E) ∪ (E \G) = [a, b] \G)

= λ∗([a, b] ∩G)∗λ([a, b] \G) (since G ⊂ [a, b])

= λ∗([a, b]) = λ([a, b]) since G is measurable

—splitting condition on [a, b] applied to setG).

Therefore the inequality reduces to equality and

λ∗(E ∩G) + λ∗(G \ E) + λ∗(E \G) + λ∗(([a, b] \G) \ E)

= λ∗(G) + λ∗([a, b] \G).

Subtracting (1) from both sides yields

λ∗(E ∩G) + λ∗(G \ E) ≤ λ∗(G). (4)

Since A ⊂ G, we have A∩E ⊂ G∩E and A\E ⊂ G\E, and by monotonicity

λ∗(A ∩ E) + λ∗(A \ E) ≤ λ∗(G ∩ E) + λ∗(G \ E)

≤ λ∗(G) (by (4))

= λ∗(A) (since G is a measurable content of A).

Combining this with our first inequality, we have established

λ∗(A) = λ∗(A ∩ E) + λ∗(A \ E)

for all A ⊂ [a, b]. Therefore the splitting condition is satisfied on E applied

to arbitrary set A ⊂ [a, b].
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Note. No where in the previous proof did we use the fact that [a, b] is the

smallest interval containing set E. We can therefore state:

Corollary 1. If E ⊂ R is a bounded measurable set (i.e., λ∗(E) = λ∗(E)),

then for any bounded set A we have

λ∗(A) = λ∗(A ∩ E) + λ∗(A \ E).

Note. Since we (following Bruckner, Bruckner, Thomson) have defined un-

bounded set E to be measurable if, for any finite interval I, set E ∩ I is

measurable, we can extend the previous corollary by eliminating the bound-

edness restriction:

Corollary 2. If E ⊂ R is a measurable set (i.e., λ∗(E) = λ∗(E)), then for

any set A ⊂ R we have

λ∗(A) = λ∗(A ∩ E) + λ∗(A \ E).

Note. In conclusion, we have shown that a set E ⊂ R is measurable (i.e.,

λ∗(E) = λ∗(E)) if and only if the Carathéodory splitting condition is satisfied:

λ∗(A) = λ∗(A ∩ E) + λ∗(A \ E).

Therefore the inner/outer measure definition of Lebesgue measurability (Bruck-

ner/Bruckner/Thomson’s) is equivalent to the splitting condition approach

(Royden/Fitzpatrick’s).
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