Some Graph, Digraph, and Mixed Graph Results Concerning Decompositions, Packings, and Coverings (ABSTRACT #1003-05-120)

Robert Gardner Benedict Bobga and Chau Nguyen Department of Mathematics East Tennessee State University

Gary Coker Department of Computer Science Francis Marion College

> presented at Joint Meeting of the A.M.S. and the M.A.A.

AMS Special Session on Design Theory and Graph Theory, I Atlanta, Georgia

January 5, 2005

1. Decompositions

Definition. A decomposition of a simple graph G with isomorphic copies of graph g is a set $\{g_1, g_2, \ldots, g_n\}$ where $g_i \cong g$ and $V(g_i) \subset$ V(G) for all $i, E(g_i) \cap E(g_i) = \emptyset$ if $i \neq j$, and $\bigcup_{i=1}^n g_i = G$. Here, V(G) is the vertex set of graph G and E(G) is the edge set of graph G.

Note. Decompositions of digraphs are similarly defined (replacing edge sets with arc sets).

Example. There is a decomposition of K_5 into 5-cycles (C_5 's):

Example. There is a decomposition of the complete digraph on 3 vertices (D_3) into 3-circuits:

Note. A decomposition of K_v into C_3 's is equivalent to a *Steiner* triple system of order v, denoted STS(v). It is well known that a STS(v) exists if and only if $v \equiv 1$ or 3 (mod 6).

Definition. There are two orientations of C_3 , a 3-circuit and a transitive triple:

A decomposition of D_v into 3-circuits is equivalent to a *Mendelsohn* triple system of order v, MTS(v). A decomposition of D_v into transitive triples is equivalent to a *directed triple system* of order v, DTS(v). A MTS(v) exists if and only if $v \equiv 0$ or 1 (mod 3), $v \neq 6$ [Mendelsohn, 1971]. A DTS(v) exists if and only if $v \equiv 0$ or 1 (mod 3) [Hung and Mendelsohn, 1973].

2. Packings and Coverings

Definition. A maximal packing of a simple graph G with isomorphic copies of graph g is a set $\{g_1, g_2, \ldots, g_n\}$ where $g_i \cong g$ and $V(g_i) \subset V(G)$ for all $i, E(g_i) \cap E(g_j) = \emptyset$ if $i \neq j, \bigcup_{i=1}^n g_i \subset G$, and

$$|E(L)| = |E(G) \setminus \bigcup_{i=1}^{n} E(g_i)|$$

is minimal. The set L is called the *leave* of the packing.

Example. A packing of K_5 with 3-cycles has a leave L with 4 edges:

Note. Packings of the complete graph on v vertices, K_v , with graph g have been studied for g a 3-cycle [Schönheim, 1966], g a 4-cycle [Schönheim and Bialostocki, 1975], $g = K_4$ [Brouwer, 1979], and g a 6-cycle [Kennedy, 1993].

Definition. A minimal covering of a simple graph G with isomorphic copies of a graph g is a set $\{g_1, g_2, \ldots, g_n\}$ where $g_i \cong g$ and $V(g_i) \subset V(G)$ for all $i, G \subset \bigcup_{i=1}^n g_i$, and

$$|E(P)| = |\cup_{i=1}^{n} E(g_i) \setminus E(G)|$$

is minimal (the graph $\bigcup_{i=1}^{n} g_i$ may not be simple and $\bigcup_{i=1}^{n} E(g_i)$ may be a multiset). The graph P is called the *padding* of the covering.

Example. A covering of K_5 with 3-cycles has a padding of $2 \times K_2$:

Note. Coverings of K_v with graph g have been studied for g a 3-cycle [Fort and Hedlund, 1958], g a 4-cycle [Schönheim and Bialostocki, 1975], and g a 6-cycle [Kennedy, 1995].

3. 4-Cycles and the Complete Graph with a Hole

Definition. The complete graph on v vertices with a hole of size w, denoted K(v, w) is the graph with vertex set V(K(v, w)) = $V_{v-w} \cup V_w$ where $|V_{v-w}| = v - w$ and $|V_w| = w$, and with edge set $E(K(v, w)) = \{(a, b) \mid a \neq b, \{a, b\} \subset V_{v-w} \cup V_w \text{ and } \{a, b\} \not\subset V_w\}.$ We let $V_{v-w} = \{1_1, 2_1, \ldots, (v - w)_1\}$ and $V_w = \{1_2, 2_2, \ldots, w_2\}.$

Example. The complete graph on 6 vertices with a hole of size 2, K(6, 2), is:

Note. It is rather well known that a 4-cycle decomposition of K_v exists if and only if $v \equiv 1 \pmod{8}$ [Schönheim and Bialostocki, 1975]. It is quite easy to show that $K_{m,n}$ can be decomposed into C_4 's if and only if $m \equiv n \equiv 0 \pmod{2}$.

Theorem. [Gardner, Lavoie, and Nguyen, 2005] A C_4 decomposition of K(v, w) exists if and only if $w \equiv 1 \pmod{2}$ and $v - w \equiv 0 \pmod{8}$.

Proof. Since each vertex of C_4 is even, a necessary condition is that each vertex of K(v, w) must be even. A vertex of V_{v-w} is of degree v - 1, therefore v must be odd. A vertex of V_w is of degree v - w and so v - w must be even and w must be odd. The graph K(v, w) has v(v - 1)/2 - w(w - 1)/2 edges. Since C_4 has four edges, another necessary condition for the desired decomposition is that $v(v-1)/2 - w(w-1)/2 \equiv 0 \pmod{4}$. Together, these conditions yield the necessary conditions of the theorem.

Now

 $K(v,w) = K_{v-w-7} \bigcup K_{v-w-8,6} \bigcup K_{v-w,w-1} \bigcup K_9 \bigcup (v-w-8)/2 \times C_4.$

Now $v-w-7 \equiv 1 \pmod{8}$ and $9 \equiv 1 \pmod{8}$, so K_{v-w-7} and K_9 can be decomposed into C_4 's. Next, v-w and w-1 are even, v-w-8and 6 are even, so $K_{v-w,w-1}$ and $K_{v-w-8,6}$ can be decomposed into C_4 's. Therefore K(v, w) can be decomposed into C_4 's.

Note. Schönheim and Bialostocki [1975] studied C_4 packings of K_v . Bryant and Khodkar [2000] studied C_3 packings of K(v, w). We now look at C_4 packings of K(v, w).

Theorem. [Gardner, Lavoie, and Nguyen, 2005] A C_4 packing of K(v, w) exists if and only if:

1. if $v - w \equiv 0 \pmod{2}$ and $w \equiv 1 \pmod{2}$, then

$$|E(L)| = \begin{cases} 0 & \text{if } v - w \equiv 0 \pmod{8} \\ 3 & \text{if } v - w \equiv 2 \pmod{8} \\ 6 & \text{if } v - w \equiv 4 \pmod{8} \\ 5 & \text{if } v - w \equiv 6 \pmod{8}, \end{cases}$$

2. if $v-w \equiv 0 \pmod{2}$ and $w \equiv 0 \pmod{2}$, then |E(L)| = (v-w)/2,

- **3.** if $v w \equiv 1 \pmod{2}$ and $w \equiv 0 \pmod{2}$, then |E(L)| = w + k where k is the minimum nonnegative integer such that $|E(K(v, w))| |E(L)| \equiv 0 \pmod{4}$,
- 4. if $v w \equiv 1 \pmod{2}$, $w \equiv 1 \pmod{2}$, and $v w \leq w$, then |E(L)| = w + k where k is the minimum nonnegative integer such that $|E(K(v, w))| - |E(L)| \equiv 0 \pmod{4}$, and
- 5. if $v w \equiv 1$, $w \equiv 1 \pmod{2}$, and v w > w, then |E(L)| = v/2 + k where k is the minimum nonnegative integer such that $|E(K(v, w))| |E(L)| \equiv \pmod{4}$.

"Proof." The proof consists of 17 cases. Consider the case $v - w \equiv 0 \pmod{2}$ and $w \equiv 0 \pmod{2}$. Each vertex of V_{v-w} is of degree v - w - 1 which is odd, therefore in the leave L each vertex from V_{v-w} must be of odd degree. So a packing with |E(L)| = (v - w)/2 would be optimal. Now $K(v, w) = (K_{v-w} \setminus M) \bigcup K_{v-w,w} \bigcup M$:

We can show (using difference methods) that $K_{v-w} \setminus M$ can be decomposed into C_4 's. Since v - w and w are both even, then $K_{v-w,w}$ can be decomposed into C_4 's. We then have an optimal packing with leave L = M where M is a matching on K_{v-w} and so |E(L)| = (v - w)/2.

Theorem. [Gardner, Lavoie, and Nguyen, 2005] A C_4 covering of K(v, w) exists if and only if:

1. if $v - w \equiv 0 \pmod{2}$, v - w > 2, and $w \equiv 1 \pmod{2}$, then

$$|E(P)| = \begin{cases} 0 & \text{if } v - w \equiv 0 \pmod{8} \\ 5 & \text{if } v - w \equiv 2 \pmod{8} \\ 2 & \text{if } v - w \equiv 4 \pmod{8} \\ 3 & \text{if } v - w \equiv 6 \pmod{8}, \end{cases}$$

2. if $v - w \equiv 0 \pmod{4}$ and $w \equiv 0 \pmod{2}$, then |E(P)| = (v - w)/2,

- **3.** if $v w \equiv 2 \pmod{4}$ and $w \equiv 0 \pmod{2}$, then |E(P)| = (v w)/2 + 2,
- 4. if $v w \equiv 1 \pmod{2}$, v w > 1, and $w \equiv 0 \pmod{2}$, then |E(P)| = w + k where k is the minimum nonnegative integer such that $|E(K(v, w)| + |E(P)| \equiv 0 \pmod{4}$,
- 5. if $v w \equiv 1 \pmod{2}$, v w > 1, $w \equiv 1 \pmod{2}$, and $v w \le w$, then |E(P)| = w + k where k is the minimum nonnegative integer such that $|E(K(v, w))| + |E(P)| \equiv 0 \pmod{4}$, and
- **6.** if $v w \equiv 1$, $w \equiv 1 \pmod{2}$, and v w > w, then |E(P)| = v/2 + k where k is the minimum nonnegative integer such that $|E(K(v, w))| + |E(P)| \equiv \pmod{4}$.

"**Proof.**" The proof consists of 22 cases. Consider the case $v - w \equiv 0 \pmod{2}$ and $w \equiv 0 \pmod{2}$. Each vertex of V_{v-w} is of degree v - w - 1 which is odd, therefore in the padding P each vertex from V_{v-w} must be of odd degree. So a covering with |E(P)| = (v - w)/2 would be optimal. We take the packing described above with the leave L a matching on V_{v-w} . We then add C_4 's as below, and have a padding P which is also a matching on V_{v-w} and hence |E(P)| = (v - w)/2.

4. Some Results Concerning Mixed Graphs

Definition. A mixed graph on v vertices is an ordered pair (V, C)where V is a set of vertices, |V| = v, and C is a set of ordered and unordered pairs, denoted [x, y] and (x, y) respectively, of elements of V. An ordered pair $[x, y] \in C$ is called an *arc* of (V, C) and an unordered pair $(x, y) \in C$ is called an *edge* of graph (V, C). The *complete mixed graph* on v vertices, denoted M_v , is the mixed graph (V, C) where, for every pair of distinct vertices $v_1, v_2 \in V$, we have $\{[v_1, v_2], [v_2, v_1], (v_1, v_2)\} \subset C$.

Example. The mixed graph M_4 is:

Note. Since M_v has twice as many arcs as edges, we are inspired to study triple system based on complete mixed graphs and the following:

Definition. A decomposition of M_v into T_i 's is a T_i triple system or order v.

Theorem. [Gardner, 1999] A T_i triple system of order v exists for all $i \in \{1, 2, 3\}$ and $v \equiv 1 \pmod{2}$, except for i = 3 and $v \in \{3, 5\}$.

Note. A study of packing and covering M_v with T_i $(i \in \{1, 2, 3\})$ is currently underway by Bobga and Gardner.

Definition. Let G be a graph and $\gamma = \{g_1, g_2, \ldots, g_n\}$ be a g decomposition of G. An *automorphism* of this decomposition is a permutation of V(G) which fixes set γ . An automorphism of digraph and mixed graph decompositions are similarly defined.

Definition. Consider a permutation on a set of size v. The permutation is said to be *cyclic* if it consists of a single cycle of length v. It is *bicyclic* if it consists of two disjoint cycles of lengths N_1 and N_2 where $v = N_1 + N_2$.

Theorems. A cyclic STS(v) exists if and only if $v \equiv 1$ or 3 (mod 6), $v \neq 9$ [Peltesohn, 1939]. A bicyclic STS(v) where $v = N_1 + N_2$ admitting an automorphism whose disjoint cyclic decomposition is a cycle of length N_1 , where $N_1 > 1$, and a cycle of length N_2 exists if and only if $N_1 \equiv 1$ or 3 (mod 6), $N_1 \neq 9$, $N_1 \mid N_2$, and $v = N_1 + N_2 \equiv 1$ or 3 (mod 6) [Calahan-Zijlstra and Gardner, 1994].

Theorems. A cyclic DTS(v) exists if and only if $v \equiv 1, 4$, or 7 (mod 12) [Colbourn and Colbourn, 1982]. A bicyclic DTS(v)admitting an automorphism consisting of two cycles each of length v/2 exists if and only if $v \equiv 4 \pmod{6}$. A bicyclic DTS(v) admitting an automorphism consisting of a cycle of length N_1 and a cycle of length N_2 , where $v = N_1 + N_2$, exists if and only if $N_1 \equiv 1, 4, \text{ or } 7$ (mod 12) and $N_2 = kN_1$ where $k \equiv 2 \pmod{3}$ [Gardner, 1998].

Theorem. A cyclic MTS(v) exists if and only if $v \equiv 1$ or 3 (mod 6), $v \neq 9$ [Colbourn and Colbourn, 1981]. To the best of my knowledge, bicyclic MTS's have not been studied.

Theorem. [Gardner, 1999] A cyclic T_i triple system of order v exists for all $i \in \{1, 2, 3\}$ and $v \equiv 1 \pmod{2}$, except for i = 3 and $v \in \{3, 5\}$.

Theorem. [Bobga and Gardner, 2005] A bicyclic T_i triple system, where $i \in \{1, 2\}$, exists admitting an automorphism consisting of a cycle of length N_1 and a cycle of length N_2 , where $N_1 < N_2$, if and only if $N_1 \equiv 1 \pmod{2}$, $N_1 \mid N_2$, and $v = N_1 + N_2 \equiv 1 \pmod{2}$. A bicyclic T_3 triple system does not exist.

"**Proof.**" Let π be a bicyclic automorphism of a T_i system where π consists of disjoint cycles of lengths N_1 and N_2 :

Notice that π^{N_1} fixes the points $\{0_1, 1_1, \ldots, (N_1 - 1)_1\}$. Therefore these points form a cyclic subsystem of order N_1 and hence $N_1 \equiv 1 \pmod{2}$.

Now consider some T_i with vertex set $\{a, b, c\}$ where $a \in \{0_1, 1_1, \ldots, (N_1 - 1)_1\}$ and $\{b, c\} \subset \{0_2, 1_2, \ldots, (N_2 - 1)_2\}$:

When we apply π^{N_2} to this triple, we see that $\pi^{N_2}(b) = b$ and $\pi^{N_2}(c) = c$, and hence $\pi^{N_2}(a) = a$. That is, N_2 is a multiple of N_1 . This established the necessary conditions. Sufficiency is established through difference methods.

5. References

- 1. B. Bobga and R. Gardner, Bicyclic, Rotational, and Reverse Mixed Triple Systems, in preparation.
- 2. D. Bryant and A. Khodkar, Maximum Packings of $K_v K_u$ with Triples, Ars Combinatoria 55 (2000), 259–270.
- 3. A. Brouwer, Optimal Packings of K_4 's into a K_n , Journal of Combinatorial Theory, Series A **26**(3) (1979), 278–297.
- R. Calahan-Zijlstra, Bicyclic Steiner Triple Systems, Discrete Math. 128 (1994), 35–44.
- M. Colbourn and C. Colbourn, Disjoint Cyclic Mendelsohn Triple Systems, Ars Combinatoria 11 (1981), 3–8.
- M. Colbourn and C. Colbourn, The Analysis of Directed Triple Systems by Refinement, Annals of Discrete Math. 15 (1982), 97–103.
- M. Fort and G. Hedlund, Minimal Coverings of Pairs by Triples, *Pacific Journal of Mathematics* 8 (1958), 709–719.
- 8. R. Gardner, Bicyclic Directed Triple Systems, Ars Combinatoria, 49 (1998) 249-257.
- 9. R. Gardner, Triple Systems from Mixed Graphs, Bulletin of the ICA 27 (1999), 95–100.
- 10. R. Gardner, C. Nguyen, S. Lavoie, 4-Cycle Packings and Coverings of the Complete Graph with a Hole, in preparation.
- S.H.Y. Hung and N.S. Mendelsohn, Directed Triple Systems, Journal Combinatorial Theory, Series A 14 (1973), 310–318.
- 12. J. Kennedy, Maximum Packings of K_n with Hexagons, Australasian Journal of Combinatorics 7 (1993), 101–110.
- 13. J. Kennedy, Two Perfect Maximum Packings and Minimum Coverings of K_n with Hexagons, Ph.D. dissertation, Auburn University, U.S.A. 1995.
- N.S. Mendelsohn, A Natural Generalization of Steiner Triple Systems, "Computers in Number Theory," eds. A.O. Atkins and B. Birch, Academic Press, London, 1971.
- R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939), 251–257.
- J. Schönheim, On Maximal Systems of k-Tuples, Studia Sci. Math. Hungarica (1966), 363-368.
- J. Schönheim and A. Bialostocki, Packing and Covering of the Complete Graph with 4-Cycles, *Canadian Mathematics Bulletin* 18(5) (1975), 703–708.