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1. Decompositions

Definition. A decomposition of a simple graph G with isomorphic

copies of graph g is a set {g1, g2, . . . , gn} where gi
∼= g and V (gi) ⊂

V (G) for all i, E(gi) ∩ E(gi) = ∅ if i 6= j, and ∪n
i=1gi = G. Here,

V (G) is the vertex set of graph G and E(G) is the edge set of graph

G.

Note. Decompositions of digraphs are similarly defined (replacing

edge sets with arc sets).

Example. There is a decomposition of K5 into 5-cycles (C5’s):
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Example. There is a decomposition of the complete digraph on 3

vertices (D3) into 3-circuits:

Note. A decomposition of Kv into C3’s is equivalent to a Steiner

triple system of order v, denoted STS(v). It is well known that a

STS(v) exists if and only if v ≡ 1 or 3 (mod 6).

Definition. There are two orientations of C3, a 3-circuit and a

transitive triple:

A decomposition of Dv into 3-circuits is equivalent to a Mendelsohn

triple system of order v, MTS(v). A decomposition of Dv into

transitive triples is equivalent to a directed triple system of order v,

DTS(v). A MTS(v) exists if and only if v ≡ 0 or 1 (mod 3), v 6= 6

[Mendelsohn, 1971]. A DTS(v) exists if and only if v ≡ 0 or 1 (mod

3) [Hung and Mendelsohn, 1973].
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2. Packings and Coverings

Definition. A maximal packing of a simple graph G with isomor-

phic copies of graph g is a set {g1, g2, . . . , gn} where gi
∼= g and

V (gi) ⊂ V (G) for all i, E(gi)∩E(gj) = ∅ if i 6= j, ∪n
i=1gi ⊂ G, and

|E(L)| = |E(G) \ ∪n
i=1E(gi)|

is minimal. The set L is called the leave of the packing.

Example. A packing of K5 with 3-cycles has a leave L with 4

edges:
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Note. Packings of the complete graph on v vertices, Kv, with graph

g have been studied for g a 3-cycle [Schönheim, 1966], g a 4-cycle

[Schönheim and Bialostocki, 1975], g = K4 [Brouwer, 1979], and g a

6-cycle [Kennedy, 1993].

Definition. A minimal covering of a simple graph G with isomor-

phic copies of a graph g is a set {g1, g2, . . . , gn} where gi
∼= g and

V (gi) ⊂ V (G) for all i, G ⊂ ∪n
i=1gi, and

|E(P )| = |∪n
i=1E(gi) \ E(G)|

is minimal (the graph ∪n
i=1gi may not be simple and ∪n

i=1E(gi) may

be a multiset). The graph P is called the padding of the covering.

Example. A covering of K5 with 3-cycles has a padding of 2×K2:
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Note. Coverings of Kv with graph g have been studied for g a

3-cycle [Fort and Hedlund, 1958], g a 4-cycle [Schönheim and Bialo-

stocki, 1975], and g a 6-cycle [Kennedy, 1995].

3. 4-Cycles and the Complete Graph with a Hole

Definition. The complete graph on v vertices with a hole of

size w, denoted K(v, w) is the graph with vertex set V (K(v, w)) =

Vv−w ∪ Vw where |Vv−w| = v − w and |Vw| = w, and with edge set

E(K(v, w)) = {(a, b) | a 6= b, {a, b} ⊂ Vv−w∪Vw and {a, b} 6⊂ Vw}.

We let Vv−w = {11, 21, . . . , (v − w)1} and Vw = {12, 22, . . . , w2}.

Example. The complete graph on 6 vertices with a hole of size 2,

K(6, 2), is:

6



Note. It is rather well known that a 4-cycle decomposition of Kv

exists if and only if v ≡ 1 (mod 8) [Schönheim and Bialostocki, 1975].

It is quite easy to show that Km,n can be decomposed into C4’s if

and only if m ≡ n ≡ 0 (mod 2).

Theorem. [Gardner, Lavoie, and Nguyen, 2005] A C4 decomposi-

tion of K(v, w) exists if and only if w ≡ 1 (mod 2) and v − w ≡ 0

(mod 8).

Proof. Since each vertex of C4 is even, a necessary condition is

that each vertex of K(v, w) must be even. A vertex of Vv−w is of

degree v − 1, therefore v must be odd. A vertex of Vw is of degree

v − w and so v − w must be even and w must be odd. The graph

K(v, w) has v(v − 1)/2 − w(w − 1)/2 edges. Since C4 has four

edges, another necessary condition for the desired decomposition is

that v(v−1)/2−w(w−1)/2 ≡ 0 (mod 4). Together, these conditions

yield the necessary conditions of the theorem.

Now

K(v, w) = Kv−w−7

⋃
Kv−w−8,6

⋃
Kv−w,w−1

⋃
K9

⋃
(v−w−8)/2×C4.
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Now v−w−7 ≡ 1 (mod 8) and 9 ≡ 1 (mod 8), so Kv−w−7 and K9 can

be decomposed into C4’s. Next, v−w and w−1 are even, v−w−8

and 6 are even, so Kv−w,w−1 and Kv−w−8,6 can be decomposed into

C4’s. Therefore K(v, w) can be decomposed into C4’s.
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Note. Schönheim and Bialostocki [1975] studied C4 packings of Kv.

Bryant and Khodkar [2000] studied C3 packings of K(v, w). We now

look at C4 packings of K(v, w).

Theorem. [Gardner, Lavoie, and Nguyen, 2005] A C4 packing of

K(v, w) exists if and only if:

1. if v − w ≡ 0 (mod 2) and w ≡ 1 (mod 2), then

|E(L)| =





0 if v − w ≡ 0(mod 8)

3 if v − w ≡ 2(mod 8)

6 if v − w ≡ 4(mod 8)

5 if v − w ≡ 6(mod 8),

2. if v−w ≡ 0 (mod 2) and w ≡ 0 (mod 2), then |E(L)| = (v−w)/2,

3. if v − w ≡ 1 (mod 2) and w ≡ 0 (mod 2), then |E(L)| =

w + k where k is the minimum nonnegative integer such that

|E(K(v, w))| − |E(L)| ≡ 0 (mod 4),

4. if v − w ≡ 1 (mod 2), w ≡ 1 (mod 2), and v − w ≤ w, then

|E(L)| = w + k where k is the minimum nonnegative integer

such that |E(K(v, w))| − |E(L)| ≡ 0 (mod 4), and

5. if v − w ≡ 1, w ≡ 1 (mod 2), and v − w > w, then |E(L)| =

v/2 + k where k is the minimum nonnegative integer such that

|E(K(v, w))| − |E(L)| ≡ (mod 4).
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“Proof.” The proof consists of 17 cases. Consider the case v−w ≡
0 (mod 2) and w ≡ 0 (mod 2). Each vertex of Vv−w is of degree

v − w − 1 which is odd, therefore in the leave L each vertex from

Vv−w must be of odd degree. So a packing with |E(L)| = (v −w)/2

would be optimal. Now K(v, w) = (Kv−w \ M)
⋃

Kv−w,w

⋃
M :

We can show (using difference methods) that Kv−w \ M can be

decomposed into C4’s. Since v − w and w are both even, then

Kv−w,w can be decomposed into C4’s. We then have an optimal

packing with leave L = M where M is a matching on Kv−w and so

|E(L)| = (v − w)/2.
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Theorem. [Gardner, Lavoie, and Nguyen, 2005] A C4 covering of

K(v, w) exists if and only if:

1. if v − w ≡ 0 (mod 2), v − w > 2, and w ≡ 1 (mod 2), then

|E(P )| =





0 if v − w ≡ 0(mod 8)

5 if v − w ≡ 2(mod 8)

2 if v − w ≡ 4(mod 8)

3 if v − w ≡ 6(mod 8),

2. if v − w ≡ 0 (mod 4) and w ≡ 0 (mod 2), then |E(P )| =

(v − w)/2,

3. if v − w ≡ 2 (mod 4) and w ≡ 0 (mod 2), then |E(P )| =

(v − w)/2 + 2,

4. if v − w ≡ 1 (mod 2), v − w > 1, and w ≡ 0 (mod 2), then

|E(P )| = w + k where k is the minimum nonnegative integer

such that |E(K(v, w)| + |E(P )| ≡ 0 (mod 4),

5. if v−w ≡ 1 (mod 2), v−w > 1, w ≡ 1 (mod 2), and v−w ≤ w,

then |E(P )| = w + k where k is the minimum nonnegative

integer such that |E(K(v, w))| + |E(P )| ≡ 0 (mod 4), and

6. if v − w ≡ 1, w ≡ 1 (mod 2), and v − w > w, then |E(P )| =

v/2 + k where k is the minimum nonnegative integer such that

|E(K(v, w))| + |E(P )| ≡ (mod 4).
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“Proof.” The proof consists of 22 cases. Consider the case v−w ≡
0 (mod 2) and w ≡ 0 (mod 2). Each vertex of Vv−w is of degree

v−w− 1 which is odd, therefore in the padding P each vertex from

Vv−w must be of odd degree. So a covering with |E(P )| = (v−w)/2

would be optimal. We take the packing described above with the

leave L a matching on Vv−w. We then add C4’s as below, and have

a padding P which is also a matching on Vv−w and hence |E(P )| =

(v − w)/2.
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4. Some Results Concerning Mixed Graphs

Definition. A mixed graph on v vertices is an ordered pair (V, C)

where V is a set of vertices, |V | = v, and C is a set of ordered and

unordered pairs, denoted [x, y] and (x, y) respectively, of elements

of V . An ordered pair [x, y] ∈ C is called an arc of (V, C) and an

unordered pair (x, y) ∈ C is called an edge of graph (V, C). The

complete mixed graph on v vertices, denoted Mv, is the mixed graph

(V, C) where, for every pair of distinct vertices v1, v2 ∈ V , we have

{[v1, v2], [v2, v1], (v1, v2)} ⊂ C.

Example. The mixed graph M4 is:
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Note. Since Mv has twice as many arcs as edges, we are inspired to

study triple system based on complete mixed graphs and the follow-

ing:

Definition. A decomposition of Mv into Ti’s is a Ti triple system

or order v.

Theorem. [Gardner, 1999] A Ti triple system of order v exists for

all i ∈ {1, 2, 3} and v ≡ 1 (mod 2), except for i = 3 and v ∈ {3, 5}.

Note. A study of packing and covering Mv with Ti (i ∈ {1, 2, 3})

is currently underway by Bobga and Gardner.

Definition. Let G be a graph and γ = {g1, g2, . . . , gn} be a g

decomposition of G. An automorphism of this decomposition is a

permutation of V (G) which fixes set γ. An automorphism of digraph

and mixed graph decompositions are similarly defined.

Definition. Consider a permutation on a set of size v. The per-

mutation is said to be cyclic if it consists of a single cycle of length

v. It is bicyclic if it consists of two disjoint cycles of lengths N1 and

N2 where v = N1 + N2.
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Theorems. A cyclic STS(v) exists if and only if v ≡ 1 or 3 (mod

6), v 6= 9 [Peltesohn, 1939]. A bicyclic STS(v) where v = N1 + N2

admitting an automorphism whose disjoint cyclic decomposition is a

cycle of length N1, where N1 > 1, and a cycle of length N2 exists

if and only if N1 ≡ 1 or 3 (mod 6), N1 6= 9, N1 | N2, and v =

N1 + N2 ≡ 1 or 3 (mod 6) [Calahan-Zijlstra and Gardner, 1994].

Theorems. A cyclic DTS(v) exists if and only if v ≡ 1, 4, or

7 (mod 12) [Colbourn and Colbourn, 1982]. A bicyclic DTS(v)

admitting an automorphism consisting of two cycles each of length

v/2 exists if and only if v ≡ 4 (mod 6). A bicyclic DTS(v) admitting

an automorphism consisting of a cycle of length N1 and a cycle of

length N2, where v = N1 + N2, exists if and only if N1 ≡ 1, 4, or 7

(mod 12) and N2 = kN1 where k ≡ 2 (mod 3) [Gardner, 1998].

Theorem. A cyclic MTS(v) exists if and only if v ≡ 1 or 3

(mod 6), v 6= 9 [Colbourn and Colbourn, 1981]. To the best of my

knowledge, bicyclic MTS’s have not been studied.

Theorem. [Gardner, 1999] A cyclic Ti triple system of order v

exists for all i ∈ {1, 2, 3} and v ≡ 1 (mod 2), except for i = 3 and

v ∈ {3, 5}.
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Theorem. [Bobga and Gardner, 2005] A bicyclic Ti triple system,

where i ∈ {1, 2}, exists admitting an automorphism consisting of a

cycle of length N1 and a cycle of length N2, where N1 < N2, if and

only if N1 ≡ 1 (mod 2), N1 | N2, and v = N1 + N2 ≡ 1 (mod 2). A

bicyclic T3 triple system does not exist.

“Proof.” Let π be a bicyclic automorphism of a Ti system where

π consists of disjoint cycles of lengths N1 and N2:

Notice that πN1 fixes the points {01, 11, . . . , (N1 − 1)1}. Therefore

these points form a cyclic subsystem of order N1 and hence N1 ≡ 1

(mod 2).
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Now consider some Ti with vertex set {a, b, c}where a ∈ {01, 11, . . . ,

(N1 − 1)1} and {b, c} ⊂ {02, 12, . . . , (N2 − 1)2}:

When we apply πN2 to this triple, we see that πN2(b) = b and

πN2(c) = c, and hence πN2(a) = a. That is, N2 is a multiple of

N1. This established the necessary conditions. Sufficiency is estab-

lished through difference methods.

17



5. References

1. B. Bobga and R. Gardner, Bicyclic, Rotational, and Reverse Mixed Triple Systems, in

preparation.

2. D. Bryant and A. Khodkar, Maximum Packings of Kv −Ku with Triples, Ars Combi-

natoria 55 (2000), 259–270.

3. A. Brouwer, Optimal Packings of K4’s into a Kn, Journal of Combinatorial Theory,

Series A 26(3) (1979), 278–297.

4. R. Calahan-Zijlstra, Bicyclic Steiner Triple Systems, Discrete Math. 128 (1994), 35–

44.

5. M. Colbourn and C. Colbourn, Disjoint Cyclic Mendelsohn Triple Systems, Ars Com-

binatoria 11 (1981), 3–8.

6. M. Colbourn and C. Colbourn, The Analysis of Directed Triple Systems by Refinement,

Annals of Discrete Math. 15 (1982), 97–103.

7. M. Fort and G. Hedlund, Minimal Coverings of Pairs by Triples, Pacific Journal of

Mathematics 8 (1958), 709–719.

8. R. Gardner, Bicyclic Directed Triple Systems, Ars Combinatoria, 49 (1998) 249-257.

9. R. Gardner, Triple Systems from Mixed Graphs, Bulletin of the ICA 27 (1999), 95–100.

10. R. Gardner, C. Nguyen, S. Lavoie, 4-Cycle Packings and Coverings of the Complete

Graph with a Hole, in preparation.

11. S.H.Y. Hung and N.S. Mendelsohn, Directed Triple Systems, Journal Combinatorial

Theory, Series A 14 (1973), 310–318.

12. J. Kennedy, Maximum Packings of Kn with Hexagons, Australasian Journal of Com-

binatorics 7 (1993), 101–110.

13. J. Kennedy, Two Perfect Maximum Packings and Minimum Coverings of Kn with

Hexagons, Ph.D. dissertation, Auburn University, U.S.A. 1995.

14. N.S. Mendelsohn, A Natural Generalization of Steiner Triple Systems, “Computers in

Number Theory,” eds. A.O. Atkins and B. Birch, Academic Press, London, 1971.

15. R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio

Math. 6 (1939), 251–257.

16. J. Schönheim, On Maximal Systems of k-Tuples, Studia Sci. Math. Hungarica (1966),

363-368.

17. J. Schönheim and A. Bialostocki, Packing and Covering of the Complete Graph with

4-Cycles, Canadian Mathematics Bulletin 18(5) (1975), 703–708.

18


