
Spin waves



The Heisenberg model of magnetism supports magnon excitations, or spin
waves, which may be identified by mapping the three spin components Ŝi,x, Ŝi,y,

and Ŝi,z on the boson creation and annihilation operators â†i and âi, respectively.
The transition from spin to bosonic operators, obeying the commutator relation
[âi, âj ] = δij is accomplished by use of the Holstein-Primakoff transformation
[1]. In what follows, we will introduce and motivate this approach, and further
show that it leads to a magnon representation of the Heisenberg Hamiltonian
[2]. In more detail:

We establish a relation between spin operators and bosonic operators â and
â† by defining

Ŝi,z ≡ Si1̂− â†i âi (1)

Using this equation, one may describe the z component of the spin at some
site i in terms of the number of its maximum, Si,z = Si as well as the number
ni of spins flipped to reduce this maximum to the actual eigenvalue of the spin
z component, Si,z:

Ŝi,z|Si,z⟩ = (Si − ni)|Si,z⟩. (2)

The number ni is eigenvalue of a boson occupation operator, according to

â†i âi|ni⟩ = ni|ni⟩, (3)

such that ni is to be associated with the number of pairs formed by two
spins with opposite orientation. Eq. (2) implies:

Si,z = Si − ni. (4)

Therefore, we have for the spin ladder operator Ŝ+
i

Ŝ+
i |ni⟩ = (Si(Si + 1)− (Si − ni)(Si − ni + 1))

1
2 |ni − 1⟩

= (2Sini − n2
i + ni)

1
2 |ni − 1⟩

=
√
2Si(1−

ni − 1

2S
)

1
2
√
ni|ni − 1⟩

(5)

The logic of the bosonic states generated by â†i dictates that the action of

Ŝ+
i , breaking up one spin-up/spin-down pair, reduces the boson number by one.

In the following step, we make use of Eq. (3) and of the identity

âi|ni⟩ =
√
ni|ni − 1⟩ (6)

to express Ŝ+
i through the bosonic creation and annihilation operators and

arrive at

Ŝ+
i =

√
2S − â†i âiâi. (7)

1



A parallel relation holds for the step-down operator Ŝ−
i , namely

Ŝ−
i = â†i

√
2S − â†i âi. (8)

Note that the transformation law (1) is readily obtained from Ŝ2
i,z = S(S +

1)− Ŝ2
i,x − Ŝ2

i,y in conjunction with

Ŝ2
i,x + Ŝ2

i,y =
1

2
(Ŝ+

i Ŝ−
i + Ŝ−

i Ŝ+
i ), (9)

as well as the commutation relation of the bosonic operators and Eqs.(78).
In the following we discuss two basic applications of the Holstein-Primakoff

formalism to the Heisenberg Hamiltonian. Specifically, we derive magnon dis-
persion relations for one-dimensional ferromagnets and antiferromagnets.

0.1 The spectrum of a ferromagnetic chain

We write the Heisenberg Hamiltonian for a one-dimensional arrangement of
evenly spaced, ferromagnetically ordered spins in terms of the spin components
Ŝi,x, Ŝi,y, and Ŝi,z:

ĤH = −J
∑
n

ŜnŜn+1 = −J
∑
n

[Ŝn,zŜn+1,z +
1

2
(Ŝ+

n Ŝ−
n+1 + Ŝ−

n Ŝ+
n+1)] (10)

Substituting for Ŝi,z, Ŝ
+
i , and Ŝ−

i by use of Eqs. (1), (7), and (8), one finds

ĤH = 2SJ
∑
n

â†nân − JS
∑
n

(â†n+1ân + â†nân+1) (11)

The Fourier transforms of the lattice operators â†i and âi engender magnon
creation and magnon annihilation operators, respectively [2]:

ĉ†k =
1√
N

∑
n

â†ne
indk,

ĉk =
1√
N

∑
j

âne
−indk,

(12)

and, correspondingly:

â†n =
1√
N

∑
k

ĉ†ke
−indk,

ân =
1√
N

∑
k

ĉke
indk.

(13)
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Here, N stands for the overall number of lattice sites, and d for the spacing
between adjacent sites. One verifies easily that the magnon operators satisfy
the bosonic commutator relation, [ĉk, ĉk′ ] = δk,k′ . Inserting Eqs. (13) into Eq.
(11) yields

ĤH = 2SJ
∑
k

(1− cos(kd))ĉ†k ĉk. (14)

Cast into this form, the Heisenberg Hamiltonian for a ferromagnetic system
is determined by a number operator N̂k = ĉ†k ĉk that counts magnons. Thus, we
may write the Hamiltonian in a still more compact form, namely:

ĤH =
∑
k

~ωkN̂k, (15)

with the dispersion relation

E(k) = ~ωk = 2SJ(1− cos(kd)). (16)

We emphasize that the limit kd << 1:

E(k) ≈ SJ(kd)2 (17)

yields, to a good approximation, a parabolic function E(k). This is the case
of a free particle.

0.2 The spectrum of an antiferromagnetic chain

The antiferromagnetic chain is governed by the same Heisenberg Hamiltonian
as the ferromagnetic chain, (10), except for a switch of sign:

ĤH = J
∑
n

ŜnŜn+1 = J
∑
n

[Ŝn,zŜn+1,z +
1

2
(Ŝ+

n Ŝ−
n+1 + Ŝ−

n Ŝ+
n+1)]. (18)

While the treatment of the antiferromagnetic chain parallels that of the
ferromagnetic counterpart it differs from the latter as fluctuations around the
maximum Ŝi,z quantum number, +S, alternate with those around the minimum
quantum number, −S. To accommodate the defining magnetic order of the an-
tiferromagnetic chain, one describes it as a combination of two interpenetrating
lattices, A and B. The Holstein-Primakoff transformation as given by Eqs. (1),
(7), and (8) is then extended to encompass two groups of boson operators, one
acting on A sites, and the other [2, 3] on B sites:

ŜA
m,z = Sm1̂− â†mâm,

ŜA,+
m =

√
2S − â†mâmâm,

ŜA,−
m = â†m

√
2S − â†mâm,

(19)
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and

ŜB
j,z = −Sj 1̂ + b̂†j b̂j ,

ŜB,+
j = b̂†j

√
2S − b̂†j b̂j b̂j ,

ŜB,−
j =

√
2S − b̂†j b̂j b̂j .

(20)

The two sets of indices, {m} and {j}, are reserved for sites of type A and B,
respectively. Inserting the spin operators (19, 20) into the Heisenberg Hamilto-
nian (18) yields an expression of great complexity. For the limiting case of small
fluctuations, however, one obtains a Hamiltonian analogous to the ferromagnetic
counterpart. This limit is defined by the condition ⟨â†mâm⟩, ⟨b̂†j b̂j⟩ << 2S, i.e.
the boson number at the two sites is small as compared with twice the spin
quantum number S. This results in

ŜA
m,z = Sm1̂− â†mâm,

ŜA,+
m =

√
2Sâm,

ŜA,−
m = â†m

√
2S,

(21)

and correspondingly for the B sublattice. This linearization leads to the
following the Heisenberg Hamiltonian:

ĤH = J
∑
m

[
2S

2
(âmb̂m+1 + â†mb̂†m+1) + S(â†mâm + b̂†m+1b̂m+1)− S2]

+J
∑
j

[
2S

2
(âj b̂j+1 + â†j b̂

†
j+1) + S(â†j âj + b̂†j+1b̂j+1)− S2].

(22)

Any component higher than quadratic in the bosonic creation and anni-
hilation operators has been omitted in this formula. Introducing the Fourier
transforms of the we write in analogy to Eqs. (12) and (13):

âk =
1√
NA

∑
m

e−imdkâm,

b̂k =
1√
NB

∑
j

e−ijdkâj ,
(23)

with NA +NB = N . Correspondingly:

âi =
1√
NA

∑
k

eimdkâk,

b̂j =
1√
NB

∑
k

eijdk b̂k,

(24)
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and equivalently for the creation operators. It should be noted that the
number of orthogonal modes distinguished by the index k is identical with the
number of lattice sites, NA = N/2 for the A lattice, NB = N/2 for the B lattice,

and N in total. We express ĤH in terms of the magnon operators âk and b̂k and
simplify, using the orthogonality relation

∑
m ei(k−k′)md = NAδk,k′ = N

2 δk,k′ . In

order to apply this relation, we carry out the k summation for the operators b̂/b̂†,
in some cases, over the index −k′ rather than k′. This imports the operators
b̂−k and b̂†−k. It follows:

ĤH = −NJS2 + 2JS
∑
k

[cos(kd)(âk b̂−k + â†k b̂
†
−k) + â†kâk + â†k b̂k] (25)

The last two operator products are in diagonal form, but not the first two.
While, for the ferromagnetic case, HH turned out to be diagonalized by Fourier
transformation, this is different for the antiferromagnetic alternative. We ad-
dress this situation by applying a Bogoliubov transformation on the operator
pair â, b̂:

âk = vkα̂k + wkβ̂
†
−k,

b̂k = vkβ̂k + wkα̂
†
−k,

(26)

where

α̂k = vkâk − wk b̂
†
−k,

β̂k = vk b̂k − wkâ
†
−k.

(27)

The new operators α̂, β̂ are constrained by the bosonic commutator relations

[α̂k, α
†
k′ ] = [β̂k, β

†
k′ ] = δk,k′ ,

[α̂k, βk′ ] = 0.
(28)

These conditions imply:

v−k = vk, w−k = wk, v
2
k − w2

k = 1. (29)

Recasting HH by use of relations (26) and (28), we arrive at

ĤH = −NJS2 + JS
∑
k

[(2 cos(kd)vkwk + v2k + w2
k)(α̂

†
kα̂k + β̂†

kβ̂k)

+2(cos(kd)vkwk + w2
k) + (cos(kd){v2k + w2

k}+ 2vkwk)(α̂kβ̂−k + α̂†
kβ̂

†
−k)].

(30)

The condition
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cos(kd)(v2k + w2
k) + 2vkwk = 0 (31)

is satisfied by vk = cosh θk, wk = sinh θk, and tanh 2θk = − cos(kd). It
obviously diagonalizes the Hamiltonian since it annihilates the non-diagonal
terms. This leaves

ĤH = −NJS2 −NJS +
∑
k

[~ωk(α̂
†
kα̂k + β̂†

kβ̂k + 1)

= E0 +
∑
k

~ωk(α̂
†
kα̂k + β̂†

kβ̂k)
(32)

with

~ωk = JS
√

1− cos2(kd) = JS sin(kd) (33)

and

E0 = −NJS2 −NJS +
∑
k

~ωk (34)

From Eq.(33), it follows that for k → 0, the antiferromagnetic chain is
characterized by linear dispersion:

ωk ∝ |k|, as k → 0, (35)

in contrast to its ferromagnetic analogue, where quadratic dispersion was
found (see Eq. (17)).

Spin waves may be probed in the laboratory by a variety of experimen-
tal techniques, including inelastic neutron or photon scattering, such as Bril-
louin, Raman, and X-ray scattering, further electron scattering, such as spin
resolved electron energy loss spectroscopy (SREELS), or ferromagnetic reso-
nance (FMR).
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