Section 13.1°:The Quantum Theory of Motion -
Interference and Tunneling

0.1 Interference

Particle interference is viewed as a characteristic feature of quantum mechanics.
An electron beam traversing an optical apparatus such as a two slit arrangement
displays, if the appropriate experimental conditions are met, an alternation of
bright and dark fringes on a screen placed behind the plane of the slits. This
effect is incompatible with the concept of localized point like particles in the
classical sense but is qualitatively accounted for by Bohr’s idea of wave-particle
duality. A physical system exposed to a wave-like experimental setup will ex-
hibit wave like behavior. The position-momentum uncertainty relation dispels
the cloud of mystery shrouding this statement. Let the incident beam consist
of electrons with well-defined momenta, and their positions will be maximally
uncertain, resulting in a plane wave description of the incoming particles.

At this point, the historical debate about the completeness of quantum me-
chanics emerges. Uncertainty forbids assigning simultaneously sharp properties
to conjugate observables. Therefore, ensembles in quantum mechanics are radi-
cally different from statistical ensembles in classical physics, as the latter involve
sets of individual entities specified in terms of conjugate quantities that adopt
simultaneously well-defined values. This, however, is the meaning of ensemble
in the Bohm-de Broglie theory. The proponents of this theory carry the burden
of the proof that particle interference distributions can be reproduced within a
model based on classical ensembles. Philippides et al. [5] constructed the quan-
tum potential for a two slit particle interference situation, involving an electron
beam at an incident energy of 4.5 keV. In this pursuit the path integral method
is used to derive the electronic wave function in the space behind the slits.
This yields a natural separation between the modulus and the phase factor and
thus permits computating the desired quantum potential @ by use of relation
(13.6). The cross section through the @ distribution parallel to the plane of
the slits, at a well-defined distance behind this plane, exhibits a regular pattern
of plateau regions separated by trough lines. Using g—f( = mV as equation of
motion, one generates trajectories determined by the quantum potential. In the
trough regions the particles are subjected to strong accelerating forces, acting
predominantly in a direction parallel to the plane of the slits and perpendic-
ular to the slit orientation. This causes pronounced kinks in the trajectories
which tend to bunch up in the force-free regions of the plateaus, giving rise to
the interference structure that is observed in the two-slit experiments involving
particles. This result has been obtained employing ensembles of particles that
move along classical trajectories, i.e. sequences of individual events. A typical
quantum phenomenon has thus been reproduced by virtue of the quantum force
as underlying organization scheme.



0.2 Tunneling

The conventional understanding of the tunnel effect has to undergo a thorough
revision when examined with the conceptual tools of the quantum theory of
motion (QTM). Since this theory operates with the concept of a classical particle
on a classical path it must reject the idea of barrier penetration that is at
the heart of quantum mechanics. Thus, the challenge of accommodating the
tunnel effect, as a cornerstone of quantum theory, within the framework of
the Bohm-de Broglie interpretation of quantum phenomena provides a crucial
test for its adequacy. Again, the load of reconciling classical thought with
experimentally secured quantum effects is carried by the quantum potential.
While the potential involved in elementary barrier tunneling problems occurring
in quantum mechanics is V(X), i.e. an unchangeable function of the spatial
coordinates, the quantum potential changes as the guiding wave propagates.
Assuming that it changes such that the effective barrier to be overcome reduces
sufficiently upon the approach of the ’tunneling’ particle, the concept of barrier
penetration could be replaced by the classically admissible one of transmission
over the barrier top. Applying the relations (4.54a,b) or their transformed
versions (13.17) and (13.19) to tunneling problems makes it possible to study
the most essential characteristics of quantum evolution as described in the frame
of a causal model.

Pioneering work of Lopreore and Wyatt [9] addressed this issue. The au-
thors defined a density evolution operator to advance the density and construct
the quantum potential Q. Subsequently, they solved the equation of motion
(13.20) resulting from Q. This quantum trajectory method (QTM) was em-
ployed in tackling the Eckart barrier problem for a variety of barrier heights
and a wide range of translational particle energies E. A one-dimensional situ-
ation was assumed, where an ensemble of equally spaced particles was initially
arranged around a center X according to the Gaussian distribution R2(X) =
(%)1/2 exp[—28(X — Xp)?]. This is the squared modulus of an initial Gaussian
wave packet Uq(X):

Wo(X) = (22) expl-BX — Xo)? 4 ihX] o

which defines the form of the pilot wave at the starting time. Using Eq.(13.6),
one may derive the quantum potential Q(X) from this wave packet. The corre-
sponding quantum force results as
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Each particle is endowed with an initial velocity V = %{, directed towards the
Eckart barrier. This implies a uniform kinetic energy for all particles of the
incident ensemble. It is, however, crucial for the understanding of the tunnel
effect within the Bohm-de Broglie view of quantum mechanics that the kinetic
energy is modified by the action of the quantum force in a non-uniform fashion.



For further clarification, we refer to the numerical example discussed by Lopre-
ore and Wyatt [9] who included a set of fifty-one particles in their simulation.
At the beginning of the motion, the quantum force imparts a boost to those
particles with initial positions X > X, while those with X < X, experience
a decelerating effect. In contrast to the established interpretation of tunneling
phenomena, the particles therefore do not approach the barrier with one con-
stant value of the kinetic energy but exhibit a distribution of kinetic energies.
This finding eliminates the need for barrier penetration to explain typical man-
ifestations of the tunnel effect. Particles with sufficiently high kinetic energy
will skim over the barrier top while those whose kinetic energy falls below the
transmission threshold will be reflected.

It is instructive to compare the total force — %[V (X) + Q(X)] involved in
this process with the quantum force Fiy. This is done in Figure 13.1 for the first
trajectory above and the last trajectory below the transmission threshold (Nos.
27 and 28, respectively), and for an initial translational energy of Ey = %‘/0,
where Vj denotes the height of the Eckart barrier. For both, the quantum force
fades out rapidly as the outer edge of the barrier is reached. During the first 5
fs of the process, however, the quantum force felt along trajectory 28 exceeds
markedly that of the competing trajectory. Thus particles moving on the former
trajectory pick up a higher amount of kinetic energy during beginning phase of
the simulation than those confined to the latter. The total force profiles show
that trajectory 28 leads beyond the barrier while 27 is deflected by the barrier.

The observation that the quantum force vanishes during the initial stage
of the motion clarifies the mechanism of particle tunneling through potential
barriers in terms of the quantum theory of motion. The quantum force creates
an initial distribution of kinetic energies that lifts certain trajectories over the
transmission threshold while shifting others below this threshold. The view that
the quantum force acts when the particle has reached the obstacle is therefore
mistaken. Its dominance at early times of the process and disappearance at
later times may be a used to improve the efficiency of numerical simulation.
The quantum force may be taken into account during the initial period of the
motion and 'switched off” once it has become small enough to be inconsequential
for the further development of the studied system.

The reflection and transmission coeflicients are given by the respective frac-
tions of reflected and transmitted particles. Figure 13.2 shows the obtained
transmission probability as a function of the energy E, comparing the quantum
trajectory method (QTM) results with those generated by numerical integration
of the TDSE.
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Figure 1: Quantum and total force as a function of time for two characteris-
tic trajectories adjacent to the transmission threshold with initial translational
energy Ey = (3/4)Vh. The particles that are more strongly boosted by the
quantum force during the first femtoseconds of the motion are transmitted, the
remaining ones reflected.(Reprinted with permission from [9]. Copyright (1999)
by the American Physical Society.)
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Figure 2: Comparison of the probability for transmission by an Eckart barrier
obtained from the quantum trajectory method (black dots) and by solving the
TDSE (solid line). (Reprinted with permission from [9]. Copyright (1999) by
the American Physical Society.)



The simulation based on the Bohm-de Broglie theory is in excellent agree-
ment with the exact quantum mechanical result over almost four orders of mag-
nitude of the translational energy.

For a long period, the Bohm-de Broglie theory was viewed chiefly as an alter-
native interpretation of quantum physics that reintroduced 'objectively existing’
entities and thus was in opposition to the positivist attitude of the Copenhagen
Interpretation, according to which quantum indeterminacy arises as an unavoid-
able consequence of applying classical categories, such as position and momen-
tum, to the quantum world. With the work of Philippides et al. [5] and later
that of R.E.Wyatt and his group [19], however, it became clear that the quan-
tum theory of motion also provides a useful tool for the numerical simulation of
quantum processes. In particular, its classical flavor, as manifested by the use of
particle trajectories, is very attractive for the treatment of quantum dynamical
problems that are too demanding to be addressed by pure wave function prop-
agation methods. At this juncture, we will outline a computational strategy for
the application of the Bohm-de Broglie theory to quantum dynamics.
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