Section 2.5 :Quadratic Effects in the E X e-Problem

We conclude our outline of the E xe - problem by pointing out that it contains far
more points of degeneracy than just the origin, p = 0, and is thus of considerably
higher complexity than suggested by the foregoing discussion. Expanding the
potential up to quadratic order, we extend Eq.(2.72) to arrive at
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where the coupling constant W has been introduced as reduced matrix element
of second order. Going from the real-valued to the complex-valued diabatic
electronic basis, as in the transition from Eq.(2.72) to Eq.(2.73), we find after
some algebraic manipulation
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The angle S is defined by [31]
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The reader verifies immediately that in the absence of the quadratic effect
(Wg = 0), the angle 8 reduces to «, and the first-order formalism described
by Eqns.(2.73 - 2.75) is recovered. Since the diabatic coupling matrix in Eq.(2)
is analogous to the matrix Eq.(2.75), introducing eigenfunctions analogous to
those given by (2.76) leads to the two adiabatic potential energy surfaces:
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Inspecting Eq.(4), we find that the quadratic order adds periodic warping to the
rim of the Mexican hat profile as shown in Figure 2.2, turning the cylindrical
symmetry of the linear problem into threefold symmetry. Further, three more
points of degeneracy, i.e. zeros of the square root term in Eq.(4) are added to
that at the origin. Their coordinates are p = 2Vg/Wg and ¢ = 7/3, 7, and
5m/3.

Employing, as in Eqns.(2.87,2.88), the single valued representation of the
wave functions, and repeating the calculation done for the linear approximation
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in Eq.(2.89), one arrives at the vector potential for the quadratic model. We
stipulate
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The angle 6 is determined as a function of « and p from the condition that the
pair {¢/_, ¢’ } diagonalizes the right hand side of Eq.(2). The most elementary
choice that satisfies this condition is 8 = 3. Using this assignment, we compute
in analogy to Eq.(2.91) the geometric phase accumulated as the ground state
wave function is transported along the loop Cj that encircles the origin, as
shown in Figure 1. This problem is by far less elementary than that posed by
the linear case, but is still analytically solvable. The result is [32]
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Ezercise 2.8 : Verify Eq.(7)

Integrating along the curve Cj in the same, i.e. the counterclockwise sense,
we obtain the previous result with inverted sign:

@(Cr) = . (8)

Further, if we extend the line integral to include both the central and a periph-
eral intersection, employing for instance the loop Cs in Figure 2.6 as boundary,
the effects of the two enclosed vector potential singularities add up to yield a
vanishing geometric phase: ¢(Cs) = 0.
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Figure 1: The central and the three peripheral conical intersections of the E x e
Jahn-Teller problem extended to quadratic order. The geometric phases accu-
mulated along the three closed loops Cy,Cy, and Co depend on the type and
the number of the enclosed conical intersections.
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