
Performance Analysis of a Tree-Based Consistency Approach 
for Cloud Databases 

Md. Ashfakul Islam1, Susan V. Vrbsky2 and Mohammad A. Hoque3 
Department of Computer Science 

The University of Alabama 
Tuscaloosa, AL 35487, USA 

1mislam@crimson.ua.edu; 2vrbsky@cs.ua.edu; 3mhoque@cs.ua.edu;  
 
 

Abstract—Cloud storage service is currently becoming a very 
popular solution for medium-sized and startup companies. 
However, there is still no suitable solution being offered to deploy 
transactional databases in a cloud platform. The maintenance of 
ACID (Atomicity, Consistency, Isolation and Durability) 
properties is the primary obstacle to the implementation of 
transactional cloud databases.  The main features of cloud 
computing: scalability, availability and reliability are achieved by 
sacrificing consistency. While different forms of consistent states 
have been introduced, they do not address the needs of many 
database applications. In this paper we present a tree-based 
consistency approach, called TBC, that reduces interdependency 
among replica servers to minimize response time of cloud 
databases and to maximize the performance of those applications. 
Experimental results indicate that our TBC approach trades off 
availability and consistency with performance.  
   

Keywords- Database as a Service, interdependancy, tree-based 
consistency, auto scaleup, response time, update requests     

I. INTRODUCTION  

Cloud computing is becoming a very prevalent word in 
industry and is receiving a large amount of attention from the 
research community. Cloud computing provides on-demand 
access to computing, eliminating the need for users to 
maintain computing resources. Cloud computing shifts the 
location of various resources to the network to provide basic 
components, such as software, storage, CPUs, and network 
bandwidth as a service, by specialized service providers at a 
low unit cost. Users of these services need not worry about 
scalability and backups because the available resources are 
virtually infinite, and failed components are replaced without 
any service interruption or data loss.  

Data applications are potential candidates for deployment in 
a cloud computing platform, especially when the amount of 
working data changes rapidly.  Cloud computing allows the 
demand for cloud resources to be elastic, thereby, allowing 
cloud architectures to solve some of the following key 
difficulties faced in auto scale (automatic incremental) data 
processing [1].  Cloud computing eliminates the difficulty in 
acquiring the amount of resources required for on-demand 
data processing. Cloud computing can distribute and 
coordinate an on-demand workload on several servers and 
provision another server for recovery in case of server failure. 
It can auto scale up and down based on dynamic workloads. 
Lastly, cloud computing eliminates the difficulty in getting rid 

of all those resources when the job is done.   
Transactional data management is the heart of the database 

industry.  Nowadays, almost all business transactions are 
conducted through transactional data management 
applications. These applications typically rely on guaranteeing 
the ACID (Atomicity, Consistency, Isolation and Durability) 
properties provided by a database and they are fairly write-
intensive.  Many existing solutions for cloud databases are 
applicable only to analytical databases, which do not have 
strong guarantees about the ACID properties.  The main 
challenge to deploy transactional data management 
applications on cloud computing platforms is to maintain the 
ACID properties without compromising the main feature of 
cloud platform scalability. 

Data availability and durability are the main principles of 
cloud vendors. Any kind of data loss or service unavailability 
can destroy their business reputation. Service availability and 
data durability can be achieved by a certain number of replicas 
of the data distributed over different geographical areas [2]. 
Amazon’s S3 cloud storage service replicates data across 
‘regions’ and ‘availability’ zones so that data and applications 
can persist even in an entire location black out. 

A consistent database must remain consistent after the 
execution of a sequence of update (Write) operations to the 
database. Any kind of inconsistent state of the data can lead to 
significant damage, especially in financial applications and 
inventory management, which is unacceptable. Most of the 
time consistency is sacrificed to maintain high availability and 
scalability in the implementation of transactional applications 
in cloud platforms. To maintain strong consistency in such an 
application is very costly in terms of performance. 

When data is replicated over a wide area, maintaining 
consistency is complicated and time consuming issue. Some 
techniques make tradeoff between the consistency and 
response time of an update request.  The authors in [8, 9, 10] 
develop a model for transactional databases with eventual 
consistency, in which updated data becomes “eventually” 
consistent.  Other approaches use data versioning to keep a 
reasonable amount of delay. However, data versioning and 
compromised consistency are not favorable for transactional 
databases. 

In this paper we present an approach for transactional cloud 
databases that does not sacrifice data consistency for 
performance.  The remainder of this paper is organized as 
follows.  In Section II we describe related work.  In Section III 

International Conference on Computing, Networking and Communications, Cloud Computing and Networking Symposium

978-1-4673-0009-4/12/$26.00 ©2012 IEEE 39



we present our consistency approach and provide an analysis 
of its performance in Section IV.  Conclusions and future 
work appear in Section V. 

II. RELATED WORK 

The first consistency model for databases presented in 1979 
[3] provided the fundamental principle of database replication 
and a number of techniques to achieve consistency. Any 
replication appears as only one database to the user, so a data 
value is not returned until all replica copies can return the 
same value.   

The consistency model of databases remained relatively 
static until the increase in databases that were highly 
distributed and replicated over a network.  The CAP theorem 
is presented in [7], states that at most two out of three 
properties can be achievable from data Consistency, data 
Availability, and data Partitions. In a cloud platform, data is 
usually replicated over a wide area. As a result, only data 
consistency and data availability remain between which a 
system can choose. Cloud vendors always focus on high 
availability, so the ’C’ (consistency) part of ACID is left to be 
compromised.  We propose to minimize this compromise. 

As an alternative, the eventual consistency model is 
presented in [4].  Different types of consistency are presented 
in this model, including the typical strong consistency, 
whereby after an update operation all subsequent access will 
return the updated value, and weak consistency, in which the 
system does not ensure that subsequent accesses will return 
the updated value. The focal point of this model is eventual 
consistency, which is a specific form of weak consistency in 
which the system ensures that if no updates are made to the 
object, all subsequent access will “eventually” return the last 
updated value.  A number of variations of eventual 
consistency are proposed.  Eventual consistency is adopted by 
many analytical data management solutions in clouds.  We 
consider only strong consistency in our approach. 

The authors in [5] develop a model of how to use Eventual 
Consistency in a transactional database.  They propose that the 
degree of consistency may differ by trading-off between cost, 
consistency and availability. A new transaction paradigm 
named Consistency Rationing is also presented in [5] that 
allows designers to define different levels of consistency 
guarantees on the data and automatically switches levels of 
consistency guarantees at runtime. While the authors propose 
this new model for trading off consistency and performance, 
they do not discuss how to achieve this.  

Additional research needs to be done to address the issue of 
consistency of transactional databases in a cloud.  In this next 
section we propose an approach that involves maintaining 
consistency by minimizing the inconsistency and maximizing 
the performance in an efficient manner. 

III. CONSISTENCY APPROACH 

According to many researchers [6], services offer by cloud 
vendors are very suitable for small, startup companies 
especially those who are not ready yet to spend a large amount 
of capital to deploy their own infrastructure. Walker et al. [6] 

present an equation to allow a company to decide whether to 
deploy their own infrastructure or lease resources from a 
cloud. According to his research, a medium-size enterprise 
should always lease resources from a cloud. One single server 
is able to serve the regular workload of a medium-sized 
company’s transactional database. But to ensure high 
reliability of transactional databases and the high availability 
offered by cloud vendors, the database should be replicated 
over multiple sites. Cloud vendors should also be prepared to 
auto scale up to handle an increase in workload.    

In this paper we present a consistency approach for 
transactional cloud databases for medium-sized companies 
where a typical database can be handled by a single server, 
and reliability and consistency are the main concern. We note 
that a Write operation updates a data item and differs from an 
append-only approach that can be resolved by creating another 
version of a data item.   We base our new approach on the 
approach proposed in [11], which considered only the 
reliability of the server and network path. Our new extended 
tree-based consistency approach, called TBC, is different in 
the following ways.  First, we consider multiple performance 
factors. Second, we also limit the maximum number children 
that each parent can have in the tree to minimize the effect of 
interdependency on performance. Lastly, no performance 
analysis of the work in [11] was given and we present 
performance results in this paper. 

A. System Description 

Our TBC strategy works as follows.  We assume that there 
are multiple replicas of data in the database, each associated 
with a different replica server.  Based on information 
maintained about each replica server, a tree is constructed that 
maximizes the performance.  The tree is constructed so that 
certain replicas (nodes in the tree) can be identified as copies 
available for a Read operation that are always consistent.  
Similarly, a node in the tree is designated as responsible for 
ensuring consistency after a Write operation. 

Our TBC strategy requires the inclusion of the following 
two components in a cloud database system:  the Controller 
and Database Replicas.  (See Figure 1.)  

i) Controller:  There may be two or more controllers in this 
system. The tasks of the controller are to: build a tree with 
the given criteria, maintain periodic communication with 
all replicas, handle server failure, integrate and 
synchronize additional or recovered servers with the 
system, and collect and maintain service logs for future 
tree building. It also makes decisions about database 
partitioning and load balancing.   

ii) Replica servers:  There are several replicas of the data in 
this system and each is stored at a different replica server. 
Replica servers store the data and perform all operations 
required to complete the transaction and any other 
database operations. One replica is selected from among 
the replicas based on some criteria as the primary replica 
to serve update requests from the user. 

B. Performance factors 

Building a tree from available replica servers necessitates 

40



 
 
 
 
 
 

Figure 1: Communication between Controller and Replicas 

considering various features of our system in order to evaluate 
the servers. Our main goal is to maximize performance, so we 
have to find out the main causes behind performance 
degradation. A cloud computing infrastructure is almost 
always built with heterogeneous components. Heterogeneous 
characteristics, such as the time required for disk update, 
workload of the server, reliability of the server, time to relay a 
message, reliability of network, or the network load of a cloud 
infrastructure can cause enormous performance degradation. 
We introduce a new evaluation metric, called PEM 
(Performance Evaluation Metric), which takes all these factors 
into consideration. Each performance factor of PEM has a 
weight factor that indicates its importance relative to the other 
factors. Weight factors can have positive or negative values 
based on their impact on performance. The performance factor 
is multiplied by its weight factor to capture its effect on the 
response time of an update request. A larger PEM indicates 
better performance. Obviously, the importance factor can vary 
per system. If the response time of an update request in a 
system depends on n performance factors, then Equation (1) 
describes the formula for calculation of the evaluation metric 
PEM for that system, where pfj is the jth performance factor 
and wfj is the corresponding weight factor of the jth 
performance factor. 

 
C.  Building the Tree 

It is the controller’s responsibility to calculate the evaluation 
metric PEM and prepare the consistency tree accordingly. The 
tree building process requires the following steps. 

i) Preparing the connection graph:  The controller will first 
prepare the weighted connection graph G (V, E). Each 
replica server is a vertex, and therefore, is a member of set 
V.  All direct connections among replica servers are 
considered as edges and members of set E. The matrix Mj 
contains the performance factor pfj of each edge 
(connection path) in G and the vector Rj contains the 
performance factor pfj for each vertex (server) in G. 
Figure 2(a) illustrates a connection graph with six 
vertices. In figures 2(c) – 2(f) the performance factors in 
M1 and R1 are associated with pf1 (path reliability) and M2 
and R2 are associated with pf2 (time delay). The values of 
pfj for the edges and vertices are predefined. Weight 
factors wf1 = 1 and wf2 = -.02 are used in this example.  

ii) Selecting the root of the tree: The controller will calculate 
PEM values for servers from the performance factors (pf) 
of servers and corresponding weight factors (wf), and 
chooses as the root the server who has the maximum 
value. This decision can be affected by the load balancing 
of the system which will be explained in Section III. F.  

iii) Preparing the consistency tree: The consistency tree will 
be prepared from the weighted connection graph. The 
controller will apply Dijkstra’s single source shortest path 
algorithm with some modification (O(n2)). Dikjstra’s 
algorithm is modified by imposing a constraint on the 
maximum number of children (Max_Child) for a parent 
node.  The maximum number of children that a parent 
node can have depends on the tradeoff between reducing 
interdependency to minimize the response time of an 
update operation and maximizing the consistency and 
reliability of a database. The root of the tree (returned by 
first call to Max_PEM) will be selected as the single 
source.  Algorithms 1-2 below will find the suitable path 
to every replica server to maximize performance and all 
paths together will form the consistency tree. Similar to 
Dijkstra’s Relax function, our Relax function tries to find 
a path better than the current best path. If any node u 
reaches the Max_Child limit, the Reweight function will 
find the alternative best path for those nodes of Q whose 
immediate parent node is u.  Using the values in figures 
2(c) - 2(f), we set the Max_Child = 2 for our example. 
After applying the algorithm, node 5 is chosen as the root 
of the tree.  The resulting tree appears in Figure 2(b).   

 
 
 
 
 
 
 
 
 
 
 

 (a): Interconnection Graph             (b): Consistency tree 

 
(c): Path Reliability M1                        (d): Time Delay M2 

 
(e): Path Reliability R1                      (f): Time Delay R2 

Figure 2: Example of a tree calculation 

1 .9 0 .8 0 .9 

.9 1 .8 0 .9 0 

0 .8 1 .9 .6 .7 

.8 0 .9 1 .9 0 

0 .9 .6 .9 1 .7 

.9 0 .7 0 .7 1 

0 25 0 20 0 15 

25 0 26 0 17 0 

0 26 0 15 24 20 

20 0 15 0 19 0 

0 17 24 19 0 22 

15 0 20 0 22 0 

50 20 60 30 10 30 .98 .98 .91 .93 .99 .96 

41



The granularity of the replicas upon which the tree is based 
can be the entire database, a table or a subset of tables in the 
database.  Similarly, a tree can be recalculated periodically to 
reflect any changes in the performance factors or its 
recalculation can be triggered by a specific event, such as a 
failure or exceeding some threshold. 

 
Algorithm 1 : Modified_Dijkstra (G, V, M, R, W) 
// G is connection graph, V is vertex set  
//M is 3D array, all pf values of each edge 
//R is 2D array of pf values of each vertex 
// W is 1D array of wf values regarding all pf 
s � Max_PEM (V, R, W)       // return node with max PEM 
Initialization(V, s)                  // similar to Dijkstra’s algorithm 
S � �               // set of nodes whose best path are determined 
Q � V              // priority queue of nodes 
while Q isn’t empty  
       u � Max_PEM (Q, R, W) 
      S � S U u 
      remove u from Q 
      num_child[ � [u]] � num_child[ � [u]] + 1 
      if num_child[� [u]] = Max_Child then 
          Reweight(� [u], S, Q)         // � is the immediate parent 
      for each vertex v � Adj[u]  
         Relax(u, v, M, R, W)       //update best path estimation 
     end for 
end while 
END Modified_Dijkstra   

 
Algorithm 2: Reweight (p, S, Q) 
for each v � Q and  � [u] = p 
       for each pf  
              if pf to be minimized then 
                   P[pf][v]� � 
            else pf to be maximized then 
                 P[pf][v] � 0  
      end for 
      for each u � S and u � p and u � Adj[v] 
           if num_child[u] < Max_Child then 
   Relax(u, v, M, R, W)    
     end for 
end for 
END Reweight 

 

D. Update Operation 

The controller informs all replica servers about its 
immediate descendants.  Each replica is responsible for 
maintaining the updates of its own descendants. Each update 
operation has a unique sequence number associated with it.  
Each replica stores two state flags: 

i) Partially consistency flag: The last updated operation 
sequence number is stored as the partially consistent flag.  
A partially consistent flag is set using a top-down 
approach. In other words, if we traverse from a node 
(replica server) to the root of the tree, for a particular 
update, all these nodes have the same sequence number 
stored as their partially consistent flag.  

ii) Fully consistent flag:  A fully consistent flag is set by a 
bottom-up approach. A fully consistent flag is also an 
update operation sequence number. It indicates that any 
node that is a descendant of a sub-tree also has the same 
update sequence number stored as its fully consistent flag.  

When the root receives an update request, it will store the 
request in a request queue. The update process at the root 
continuously monitors the queue.  When the replica server is 
available, an update request is dequeued to initiate an update 
operation.  
An update operation is done using the following four steps. 

1. An update request will be sent to all children of the root   
2. The root will continue to process the update request on 

its replica   
3. The root will wait to receive confirmation of successful 

updates from all of its immediate children 
4. A notification for a successful update will be sent from 

root to the client  
The root will update its partially consistent flag with the 
corresponding update sequence number after completion of its 
update operation.   

Update operations at non-root nodes are handled by two 
different processes. After receiving an update request one 
process initiates the required steps to update it, notifies its 
parent and stores the update sequence number as its partially 
consistent flag. The other process stores an update request in a 
queue, sends the request to all its children, waits until all of its 
children reply with a successful update before its sends the 
next update request from queue.  

Storing the fully consistent flag is initiated by leaf nodes. 
When a leaf node is done with an update request, it stores the 
sequence number as both the partially consistent flag and fully 
consistent flag.  It then informs its parent about storing its 
fully consistent flag.  All intermediate nodes will notify their 
parent when they receive notification from all of their 
children. 

E. Maintaining Consistency 

A request for a Read to the data will always return a value 
from either the replica that is the root node or one of the 
immediate descendants of the root node, as these values will 
always reflect the most recent updates.  The structure of the 
tree itself determines how many replicas can serve in this 
capacity.  If all nodes are immediate descendents of the root 
node, then this is considered the classic approach. In the 
classic approach, all replicas must be updated before any Read 
can occur, so the response time is increased. Fewer immediate 
descendents of the root node will result in a decrease in 
response time for updates, but increase the workload on the 
root node and its immediate descendents.  

The root node of the tree is responsible for making sure all 
of the replicas in the tree are updated once a Write operation is 
issued.   Hence, in our approach, we consider one replica as 
responsible for update operations and several replicas to 
manage durability and reliability.   In the next section we 
discuss increasing the number of replicas responsible for 
update operations. 

42



F. Auto Scale up 

 One of the key features of a cloud platform is to prevent the 
user from having to worry about the variable nature of the 
workload. Cloud systems should be able to handle an 
increased workload automatically. If the workload exceeds the 
threshold limit of the root node, the controller takes the 
initiative for handling the excess load. This process is done by 
following steps: 

i) Controller uses the results from the evaluation of the PEM 
metric to identify the server that scored the second best 
among all replica servers as the next possible root. 
Another tree is then built by same process described in 
Section III.C.  

ii) Controller makes a decision about which portion of an 
update request should be shared with another root.  
Obviously, an update request on the same data or highly 
related data must not be sent to a different root.  To 
address consecutive Read/Write requests, the data can be 
partitioned based on such factors as: relationships 
between the data, nature of the data, importance of the 
data and response time tolerance.  

As the load continues to increase, the controller follows the 
same steps as long as the load exceeds the total capacity of the 
current system.  In that case, the required number of new 
nodes will be launched. Details of that process and partitioning 
for serializability will be included in next stage of our 
research.  

G. Failure Recovery 

We assume any server or communication path between two 
servers can go down at any time. It is the responsibility of the 
controller to handle such a situation. There are two types of 
situations: 

i) Primary server is down: The controller maintains 
continuous communication with the primary server. If the 
controller is able to determine that the primary server is 
down, it will communicate with the immediate descendant 
of the root server concerning its partially and fully 
consistent flag. If both flags are the same, the controller 
will choose a new root from all servers. If both flags are 
not the same, then the controller queries the servers to 
find a server with the latest updates.  It is an immediate 
descendent which has the same sequence value as the 
controller’s for its partially consistent flag.  From among 
these latest updated servers the controller will find the 
root. The connection graph is then reconfigured with all 
available servers and the consistency tree is built using the 
strategy described in Section III.C. 

ii) Other server or communication path is down: If the 
unresponsive behavior of an immediate descendant is 
reported at any time by an intermediate node, the 
controller tries to communicate with that server.  The 
controller will fail to communicate with the server if it is 
down.  The connection graph is then reconfigured without 
that server, the consistency tree is built with the same root 
and all servers are informed about the new tree structure.  
In the event the communication path is down, the 
controller can still communicate with the server via 

another path.  The controller will then reconfigure the 
connection graph including the server and build the 
consistency tree as described in Section III.C.   

The TBC approach reduces interdependency between 
replicas because of the fact that a replica is only responsible 
for its immediate descendants. When a replica is ready to 
perform an update, it only has to inform its immediate 
descendants, receive acknowledgements from them and update 
its data.  Hence, the transaction failure risk due to 
interdependency is reduced regardless of the network load, 
bandwidth and other performance factors. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Environment 

We have performed TBC experiments on a green cluster 
called Sage, built at the University of Alabama.  All 9 nodes of 
sage are composed of  an Intel D201GLY2 mainboard with 
1.2 GHz Celeron CPU, 1 Gb 533 Mhz RAM, 80 Gb SATA 3 
hard drive. All nodes are connected to a central switch on a 
100 Megabit Ethernet in a star configuration, using the 
D201GLY2 motherboard on-board 10/100 Mbps LAN.  The 
operating system is Ubuntu Linux 7.10.  Shared memory is 
implemented through NFS mounting of the head node's home 
directory.   

A standalone java program runs on each cluster to perform 
the update operation, which is defined as a certain amount of 
delay in execution. When the server receives an update 
request, it will wait a certain amount of time t before sending a 
reply indicating a successful update, where t = op + wl (op 
represents actual time required for a disk operation and wl 
represents a delay due to the workload of the disk and 
operating system). A uniform random variable is used in the 
calculation of wl.  The time duration between two consecutive 
update operations is determined by a Poisson random 
distribution.  All times are measured in Milliseconds.  

In our experiments, every 20 ms a new update request will 
arrive with an arrival rate of � = 0.1.  The default update time 
op is 10 ms. The workload overhead wl is uniformly 
distributed between 0 and 50.  The fastest server is five times 
faster than the slowest server (server heterogeneity). 

B. Performance Metric 

In our experiments, we consider a thousand update requests 
sent by clients for each case.  A comparison between the TBC 
approach and the classic approach described in Section III is 
the main focus of our experiments.  We measure the elapsed 
time between when an update request is sent and when the 
primary server sends a reply to the client indicating a 
successful update.  We compute the average response time in 
order to make the comparison between the classic approach 
and our TBC approach, as well as to determine the effect of 
some of the system factors on performance.  

C. Effect of update request rate 

We first study the effect of different arrival rates of update 
requests by changing the value of �. We use the other 
parameter values as default values. As shown in Figure 3(a), 
the response time increases as the request arrival rate increases 

43



from 0.01 to 0.2 for both approaches. The TBC approach 
ranges from a low of 92 for � = 0.01 to a high of 179 for � = 
0.2.  The classic approach ranges from a low of 121 for � = 
0.01 to a high of 1040 for � = 0.2.  The performance of the 
TBC approach increases linearly, while the increase in the 
classic approach is approaching exponential. 

D. Effect of heterogenity of servers  

In our next experiment we vary the heterogeneity of servers 
by considering three categories of heterogeneity:  low, 
medium and high.  To model low heterogeneity, all replica 
servers are similar in response time, whereby the fastest server 
is two times faster than the slowest server. In order to model 
medium heterogeneity, the fastest server is five times faster 
than the slowest server. For high heterogeneity, the fastest 
server is nine times faster than the slowest server. Obviously, 
the fastest server was selected as the primary server in the 
classic approach and as the root in the TBC approach. The tree 
was formed according to algorithm described in Section III.C.  

(a): Effect of update request rate  

 

 

(b): Effect of heterogeneity of servers 
 

Figure 3:  Effect on Response Time 

Figure 3(b), illustrates that as the degree of heterogeneity of 
the servers increases, the response time increases.  The results 
also demonstrate that despite the degree of heterogeneity of 
the servers, the TBC approach has a much faster response time 
which ranges from a low of 112 to a high of 212.  The classic 
approach response time ranges from 173 to 1147.  The 
response time of the TBC approach doubles from the low to 

high heterogeneity, while the response time of the classic 
approach increases more than five times.  Though we did 
expect the response time of the classic approach to be higher 
than the TBC for high heterogeneity and a high arrival rate 
(Figure 3(a)), we did not anticipate the dramatic amount of 
this increase. 

V. CONCLUSIONS AND FUTURE WORK 

Maintaining consistency, availability and high throughput 
among replica servers is a key issue in cloud databases.  Many 
highly concurrent systems tolerate data inconsistency across 
replicas to support high throughput.  However, in many 
systems, it is still important to maintain data consistency.  
Highly unreliable systems can face transaction failures for 
interdependency among replica servers, but for some of these 
systems it remains important to maintain data consistency 
despite such failures.  In this paper we have proposed a TBC 
approach that reduces the interdependency among replica 
servers. Experimental results indicate that our TBC approach 
trades off consistency and availability with performance.  The 
TBC approach performed well in terms of response time 
despite the heterogeneity of the servers or the arrival time.   

The goal of our work is to provide low cost solutions to 
ensure data consistency in the cloud.  Our next plan is to 
implement abort, commit, and rollback protocols in our TBC 
approach for transactional data management in clouds. Finding 
suitable values for the importance factors is also included in 
our future work.  Minimizing the inconsistency window length 
will also be addressed. 

VI. REFERENCES 

[1] Jinesh Varia. Cloud Architectures. White paper of Amazon. 2008. 
[2] Daniel J. Abadi. Data Management in the Cloud: Limitations and 

Opportunities. Data Engineering 2009 
[3] B. G. Lindsay P. G. Selinger C. Galtieri J. N. Gray R. A. Lorie T. 

G. Price F. Putzolu B. W. Wade. Notes on Distributed Databases. 
July 1979. 

[4] Werner Vogels. Eventually Consistent. Communications of the 
ACM, 2009. 

[5] Tim Kraska Martin Hentschel Gustavo Alonso Donald Kossmann. 
Consistency Rationing in the Cloud: Pay only when it matters. 
VLDB 2009.  

[6] Edward Walker, Walter Brisken, Jonathan Romney. To Lease or 
not To Lease From Storage Clouds. IEEE Computer April 2010. 

[7] Eric Brewer. Towards Robust Distributed Systems. Annual ACM 
Symposium on Principles of Distributed Computing. July 2000. 

[8] Matthias Brantner, Daniela Florescuy, David Graf, Donald 
Kossmann, Tim Kraska. Building a Database on S3. SIGMOD 
2008 

[9] Zhou Wei, Guillaume Pierre, Chi-Hung Chi. Scalable 
Transactions for Web Applications in the Cloud. Euro Par 2009. 

[10] Sudipto Das, Divyakant Agrawal, Amr El Abbadi. ElasTraS: An 
Elastic Transactional Data Store in the Cloud. HotCloud'09 

[11] Md. Ashfakul Islam and Susan V. Vrbsky, “A Tree-Based 
Consistency Approach for Cloud Databases,” 2nd IEEE 
International Conference on Cloud Computing Technology and 
Science, CloudCom 2010. 

44



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /SABAEN44
    /SAKURAalp
    /Shruti
    /SimSun
    /STSong
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


