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Abstract— This paper presents a novel implementation of 

parallel sparse matrix-matrix multiplication using distributed 

memory systems on heterogeneous hardware architecture. The 

proposed algorithm is expected to be linearly scalable up to 

several thousands of processors for matrices with dimensions 

over 106 (million). Our approach of parallelism is based on 1D 

decomposition and can work for both structured and 

unstructured sparse matrices. The storage mechanism is based 

on distributed hash lists, which reduces the latency for accessing 

and modifying an element of the product matrix, while reducing 

the overall merging time of the partial results computed by the 

processors.  Theoretically, the time and space complexity of our 

algorithm is linearly proportionate to the total number of non-

zero elements in the product matrix C. The results of the 

performance evaluation show that the algorithm scales much 

better for sparse matrices with bigger dimensions. The speedup 

achieved using our algorithm is much better that other existing 

1D algorithm. We have been able to achieve about 500 times 

speedup with only 672 processors. We also identified the impact 

of hardware architecture on scalability.  (Abstract) 

Keywords—MPI, Scalable, Sparse Matrix, Parallel Algorithm, 

Distributed Computing.  (key words) 

 

I. INTRODUCTION  

Numerical solutions of many critical problems reduce to 

various forms of matrix operations, in part or in full. Matrix-

matrix multiplication has been deemed as the fundamental 

building block for solving many problems in almost every 

area of science and engineering. Many of these problems 

involve large eigenvalue problems or extremely sparse 

systems of linear equations. Hence, determining the product of 

two sparse matrices is a basic problem in combinatorial and 

scientific computing. 

  

Applications of sparse matrix-matrix multiplication are 

scattered in various dimensions of research like vehicular ad 

hoc networks, multi-grid methods, clustering algorithms, 

delay tolerant networks, quantum mechanics, context-free 

languages and computational fluid dynamics. The parallel and 

distributed computing paradigm has minimized the bottleneck 

of large-scale data manipulation and computing needs. 

Therefore, the computational scientists heavily rely on the 

efficiency of parallel algorithms on linear algebra operations. 

Existing libraries for parallel dense matrix multiplication are 

proven to perform close to optimal efficiency. However, 

parallel sparse matrix-matrix multiplication algorithms are still 

considered as a research problem for both distributed and 

shared memory environment. It has been shown that current 

parallel algorithms for multiplying sparse matrices does not 

scale well for higher number of processors even though they 

perform reasonably well for limited number of processors 

[1,2]. In most cases, the scaling is deteriorated by the 

increased process-to-process communication costs. On the 

other hand the parallel execution time is also dependent on the 

implementation of data structures and storage mechanism. In 

addition, heterogeneous hardware architecture is a major 

concern for load balancing. Though heterogeneous systems 

i.e., general purpose x86 CPUs coupled with GPUs are 

gaining interests in the high performance community for 

accelerating some specific workload, incorporation of 

heterogeneous systems drive to additional difficulties in terms 

of programming interfaces, data distribution and 

communication among the heterogeneous processing elements 

[9]. Further, the complexity of sparse algorithms is highly 

dependent on the sparsity and distribution pattern of nonzero 

elements of the input matrices [2,3]. Hence, due to all these 

factors, achieving scalability for parallel sparse matrix 

multiplication algorithms is a very challenging problem. 

  

In this paper we describe a novel implementation of parallel 

sparse matrix-matrix multiplication that makes use of 

distributed hash lists ensuring an efficient storage mechanism. 

This implementation is tested on the Linux clusters of the 

Texas Southern University HPC Center (TSU-HPCC) [8] 

using inputs of randomly generated but structured square 

matrices up to a maximum dimension of 106 (1 Million).  Our 

algorithm has shown a trend for linear scaling up to the 

maximum limit of our homogenous computing resources, 

which is a total of 672 cores of processor. The maximum 

speedup attained using our resources was about 500 which is 

so far the best performance for any sparse matrix 

multiplication algorithm given the maximum number of 

cores.  Also the average MPI communication overhead per 

process decreases with the increase of processors, which is the 

underlying factor for achieving the scalability with our 

algorithm. The scalability tends to be better for larger 

matrices. Additionally, the algorithm can perform equally for 

both structured and non-structured matrices. 

This research if funded by the NSF CREST project. (Grant No. 1137732) 



The following sections are organized as follows: section II 

provides an overview of the problem definition, notations and 

terminology used in this paper; section III describes the 

previous research within this and related fields; section IV 

describes implementation details and the algorithm, followed 

by the performance evaluation in section V. Finally we 

conclude in section VI indicating our future extensions of this 

algorithm and open issues for further investigation. 

II. PROBLEM DEFINITION, TERMINOLOGY AND NOTATIONS 

We consider quite similar terminology adopted by Buluc et. 

al. [4]. Our goal is to compute C = AB, where A and B are the 

two input sparse matrices. The dimension of A and B are M × 

K and K × N respectively. For simplicity, we will be using 

square matrices (M = K = N) for analysis purpose, but the 

proposed algorithms can easily operate on rectangular 

matrices. Let, 

 

p  = total number of processors  

γ  = cost of one floating-point operation (nanoseconds)  

α  = cost of insertion into a vector  

β  = inverse bandwidth (nanoseconds per word)  

 = cost of insertion into hash list 

nnz(A)  = number of nonzero elements in A 

A(:, i)  = ith column of A  

A(i, :)  = ith row of A  

A(i, j)  = the element at the (i, j)th position of A  

flops = total number of operations to compute AB. 

c = avg. number of nonzero elements per row/column  

𝑁𝑖 = Starting column/row index for process pi 

 

Our algorithm assumes that the sparsities/densities of the input 

matrices known a priori. To make the analysis simple, we 

assume that both the input matrices A and B have equal 

sparsity. Hence, nnz(A) = nnz(B) = cN.  For our input matrices, 

we considered c=75 for square matrices with a dimension of 

N=106 (1 Million) and c=152 for N=105.  

 

Our matrix multiplication algorithm is based on the Outer 

Product calculation approach. Fig.1 shows a simple example 

of distributed matrix multiplication using outer product with 4 

parallel processors. 

 

 
Fig. 1: Distributed multiplication using Outer Product 

As shown in the figure, each of the processors 𝑃𝑖  is assigned 

with block of columns, 𝑁𝑖  to 𝑁𝑖+1 − 1  and compute 𝐶𝑖  in 

parallel, where, 

 

𝐶𝑖 = ∑ 𝐴(: , 𝑘) × 𝐵(𝑘, : )

𝑁𝑖+1−1

𝑘=𝑁𝑖

 

 

(1) 

 

After calculating the results of individual portion, the final 

result is merged by combining all the partial results from the 

parallel processors. Hence, the final product matrix, 

 

𝐶 = ∑ 𝐶𝑖

𝑝

𝑖=1

= ∑ ∑ 𝐴(: , 𝑘) × 𝐵(𝑘, : )

𝑁𝑖+1−1

𝑘=𝑁𝑖

𝑝

𝑖=1

 

 

(2) 

 

III. RELATED WORK 

 

The Generalized Sparse Matrix-Matrix Multiplication problem 

(SpGEMM) has been extensively investigated by Gustavson et 

al. [5] which described the first classical serial algorithm for 

SpGEMM in 1978. This algorithm stores the elements of the 

matrices in Compressed Sparse Column (CSC) format and has 

a complexity of O(flops + nnz + n), which is proven to be 

optimal for flops max{nnz,n}. Later, it was used by many 

mathematical software and libraries like MATLAB [6], 

CSparse [7] etc.  The lower bound of time complexity for any 

sequential SpGEMM is which is met by Gustavson’s 

algorithm [1]. Hence we consider the sequential work (W) to 

be equal to for our speedup analysis. 

 

On the other hand, the parallel version of SpGEMM (known 

as PSpGEMM) has not been developed to the efficiency of its 

dense matrix counterpart. While there have been significant 

progress in development of parallel dense linear algebra 

libraries like PBLAS [18], ScaLAPACK [20] etc. within the 

last couple of decades, but the sparse libraries haven’t reached 

up to that level of enrichment mostly due to the lack of 

scalability. Most of the current sparse algorithms are 

implemented on a distributed memory environment using MPI 

communication. As of today, to the best of our knowledge, 

there hasn’t been any PSpGEMM algorithm implemented on 

hybrid architecture that combines the benefits of both 

distributed as well as shared memory environment using MPI 

and OpenMP in concert. Other variants of programming tools 

in shared memory architecture like ccNUMA, PGAS are not 

yet considered for sparse matrix-matrix multiplication. 

However, several hybrid parallel algorithms have been 

developed for sparse matrix-vector multiplication [15,17] that 

is basically a special case of sparse matrix-matrix 

multiplication and has fewer constraints. In these cases, the 

algorithm needs to focus primarily only on the single sparse 

matrix on the left while the vector is usually dense and the 

multiplication operation generates a single vector as output 

making the storage management with the data structures 

greatly simplified. 



Siegel et al. [9] described a co-design approach for 

implementing PSpGEMM efficiently on a heterogeneous 

cluster using both multicore CPUs and GPUs. Their algorithm 

was based on the original Gustavson’s algorithm [5]. Their 

work dealt with dynamically optimizing the load balancing for 

GPUs. Unfortunately, they have also shown that no speedups 

can be achieved with their implementation for hyper-sparse 

matrices where the density of nonzeros are less than 0.01%. 

  

In the domain of distributed memory environment, Buluc et 

al. [1,2,3,4] has contributed significantly for examining the 

scalability of different implementations of PSpGEMM with 

1D, 2D and 3D decomposition. They are the first to develop 

any 2D or 3D algorithm for PSpGEMM, while as of today, no 

other algorithm has been implemented using 2D or 3D 

decomposition. All of their algorithms are based on inner 

product and use a novel data-structure called Doubly 

Compressed Sparse Column (DCSC), which ensures a storage 

complexity of 𝑂(𝑛𝑛𝑧). Unfortunately, their 1D algorithms are 

not scalable beyond a certain number of processors, while 2D 

algorithms are [1,3]. The main reason for 1D algorithms not 

being scalable is the increased MPI communication overhead 

[2]. One of the problems with their 1D algorithm is that, it 

requires each of the parallel processors to broadcast an entire 

row of B matrix during every iteration. This causes a storm of 

communication that eventually makes the algorithm un-

scalable. However, their 2D algorithms (Sparse SUMMA and 

Sparse CANNON) do show a better scaling performance in 

terms of communication overhead and overall execution 

time.  In contrast to their 1D approach, our algorithm uses an 

outer product method where each processor conducts point-to-

point communication with others for merging the intermediate 

results. We will now describe the computational resources for 

which we implemented our novel algorithm. 

IV. ALGORITHM DESCRIPTION 

A. Data-Structure and Storage Mechanism 

1) Distributed Hashlist 

We use distributed hash lists for storing the matrices. Open 

hashing technique is considered with an initial table size 

varying from N to 10N. The hash key is composed of the row 

and column indexes of the non-zero elements of the matrices. 

Each element is stored as a Node-type data structure 

containing <row, column, value> tuple. The reason for not 

choosing closed hashing or open addressing type of hash list is 

to avoid frequent resizing of the product matrix. Even though 

the sparsity of the input matrices are known a priori, the 

product matrix belonging to each processor may have a 

varying number of non-zero elements ranging from 𝑁
𝑝⁄  to 

𝑐2𝑁
𝑝⁄ . Each incidence of table resizing leads to redistribution 

of the elements of the entire list along the modified address 

space. This is a costly operation having 𝑂(ℎ𝑎𝑠ℎ𝑠𝑖𝑧𝑒) 

complexity which can occur more than once for each 

processor. That is the reason we considered open hashing to 

eliminate the cost of frequent resize.  

 

2) Auxiliary Storage 

MPI communication does not support non-sequential memory 

data transfer. As open hashing mechanism involves separate 

chains to resolve collisions, we had to define auxiliary storage 

for MPI communication.  Once every processor completes the 

computation of individual portion of the result, it then 

transfers the non-contiguous hash-list of C matrix into 

contiguous chunks of memory. For that we utilize the benefits 

of ‘vector’ type data structures that implicitly support dynamic 

contiguous memory allocation. The total hash-list is divided 

into different queues, 𝑄𝑗  based on the column index. Each 

processor needs to perform this step only once after finishing 

the computation. Hence, the total storage required for storing 

and exchanging the C matrix by every processor is 
(2𝑐2𝑁)

𝑝⁄  

that meets the upper bound of optimal storage requirement 

(
𝑐2𝑁

𝑝
) . 

B. Details Steps of Algorithm 

The input matrices A and B are initially stored as compressed 

sparse columns (CSC) and compressed sparse rows (CSR) 

respectively. These data structures are implemented as arrays 

of vectors. Each processor has ⌈𝑁
𝑝⁄ ⌉ vectors from both A and 

B that corresponds to ⌈𝑁
𝑝⁄ ⌉ columns of A and ⌈𝑁

𝑝⁄ ⌉ rows of 

B. The entire multiplication algorithm has three major steps to 

compute the final product matrix C, where the result matrix C 

is left distributed across the processors. 

 

1) Partial Result Calculation 

Let 𝑁𝑖 be the starting column index for the block of columns 

handled by processor 𝑃𝑖 . During this step each of the 

processors, 𝑃𝑖  iterates over k for a total of ⌈𝑁
𝑝⁄ ⌉ iterations and 

computes a Cartesian product of the column vector 𝐴(: , 𝑘) 

with the row vector𝐵(𝑘, : ), generating a sub-matrix of𝐶𝑖. Each 

processor contains the chunk of data comprising of ⌈𝑁
𝑝⁄ ⌉ 

columns of A and ⌈𝑁
𝑝⁄ ⌉ rows of B. If there are 𝑐1 non-zero 

elements in 𝐴(: , 𝑘)  and 𝑐2 non-zero elements in 𝐵(𝑘, ; )  then 

the number of elements added to the 𝐶𝑖  sub-matrix will 

be𝑐1𝑐2. For simplicity of analysis, we assume 𝑐1 = 𝑐2 = 𝑐. As 

this operation is done for ⌈𝑁
𝑝⁄ ⌉ times, the total number of 

floating point operations in this step will be ⌈𝑁
𝑝⁄ ⌉𝑐1𝑐2, which 

yields a time-complexity of 𝑂 (𝑐2𝑁
𝑝⁄ ). 

 
Fig. 2: Multiplication handled by Pi 



 
Fig. 3: Inter-process communication pattern (p = 4) 

  

 
Fig. 4: Proposed Algorithm  

2) Exchange of Partail Results 

In this step every processor distributes a portion of the local 

result 𝐶𝑖 to all other processors. This is demonstrated in Fig. 3 

where one of the 𝑝  processors, 𝑃2  sends the partial results 

stored in hash list 𝐶2 to 𝑃1, 𝑃3and 𝑃4. The total size of hash list 

𝐶2  is equal to 𝑐2 ⌈
𝑁

𝑝
⌉  which is further distributed into 𝑝 

column-wise blocks. Every processor 𝑃𝑖  only accumulates the 

block of columns in 𝐶𝑖  that includes columns indexing from 𝑁𝑖 

to (𝑁𝑖 +  ⌈
𝑁

𝑝
⌉). The total amount of data sent by each 

processor is equal to (𝑝 − 1) ×
𝑐2⌈

𝑁

𝑝
⌉

𝑝
 which is𝑂(

𝑐2𝑁

𝑝
). Hence, 

the complexity of this step is also equal to 𝑂 (𝑐2𝑁
𝑝⁄ ). 

As mentioned previously, the exchange of results imposes 

some extra overhead of queuing the hash list into (𝑝 − 1) 

vectors of consecutive memory data structure. While 

accessing each element of 𝐶𝑖, the column index is divided by 

⌈
𝑁

𝑝
⌉ to get the appropriate index j of the sub-hash list 𝐶𝑖

𝑗
 that is 

inserted into the vector 𝑄𝑗 . This 𝑄𝑗  vector is communicated 

over MPI and sent to 𝑃𝑗.   

 

3) Merging results 

Once each processor 𝑃𝑖  receives the partial result (𝐶𝑖
𝑗
) from 

each of the other processors (𝑃𝑗), it merges with its own hash 

list of 𝐶𝑖. Each partial result (𝐶𝑖
𝑗
) contains 

𝑐2⌈
𝑁

𝑝
⌉

𝑝
 elements on an 

average. Hence, for p-1 processors, the total merging from this 

step also requires a total of 𝑂 (𝑐2𝑁
𝑝⁄ ) operations. The result 

matrix is kept distributed over p processes. Fig. 4 describes the 

complete step-by-step description of the algorithm. 

 

V. PERFORMANCE EVALUATION 

We have evaluated the performance of our algorithms on 

TSU-HPCC clusters. Our High Performance Computing 

center has medium scale computational resources, which 

includes two Linux clusters: Ares and Hades. Fig. 5 below 

shows the topology of the two clusters and Fig. 6 shows the 

actual racks where the cluster is hosted.  

 

 
Fig. 5 Topology of ARES and HADES 



 
Fig. 6 TSU HPCC clusters 

 

Ares has 16 dual-slot quad-core nodes with Intel Xenon 5350 

2.0 GHz processors with 8 Gigabytes of memory per node. 

Hades has i) 8 dual slot hyper threaded quad core nodes with 

the Intel E5520 2.33 GHz Xeon processor with 12 gigabytes 

of memory; ii) 28 dual slot hyper threaded 6 core nodes with 

the Intel EE5645 2.40GHz Xeon Processor with 24 gigabytes 

of memory.  

 

The nodes are connected via two different switches, one is a 

standard 1Gb Ethernet switch and the other through 10 

Gigabit Ethernet using an ultra low latency Force10 switch. 

The full parallel cluster has a total of 944 virtual cores and a 

total memory of 996 Gigabytes, with a theoretical peak speed 

of 5.0 Teraflops. Due to the heterogeneity of the nodes and 

processors we mainly used the homogenous nodes for 

scalability evaluation, which comprised of the 28 EE5645 

nodes of HADES, having a total of 672 cores.  For some of 

the cases we have also included the 8 E5520 nodes that made 

a total of 800 processors to be used in our evaluation.   

A. Scalability 

Our algorithm shows linear scalability up to the maximum 

number of homogeneous processors available in our HPCC. In 

our experiment, the speedup is calculated based on 

multiprocessor execution time compared with single processor 

execution. Figure 7 shows the scaling performances for matrix 

dimension of 1M x 1M. The left vertical axes are in 

logarithmic scale. It is evident from the results that for larger 

matrices the algorithm performs much better, as it can reach 

up to ~500 times speedup with 672 processors for 1M matrix. 

The speedup also increases linearly with the increase of 

number of processors. The trend shown by the results give us 

an impression that the algorithm might prove to be linearly 

scalable up to at least few thousand processors. Fig. 8 shows a 

comparison of speedup for different matrix sizes. While the 

100K matrix does scale linearly, the speedup, however, is 

much less compared to the 1M matrix. The main reason of 

better efficiency for larger matrices can be understood from 

the percentage of total execution time spent in 

communication, which is elaborated in the next subsection.    

 
Fig. 7 Scalability of 1M Matrix 

 

 
Fig. 8 Comparison of Speedup for different Matrix Size 

B. Communication Overhead 

We evaluated the MPI communication overheads for all the 

three different matrix sizes (1M, 500K, 100K). Fig. 9 shows 

the percentage of communication overhead for different 

matrix sizes. As single process yields serial execution, there is 

no communication overhead in this case. As applicable for any 

MPI based distributed 1D algorithm, the percentage of MPI 

communication overhead increases with the increment of 

number of processors. A closer look into Fig. 9 reveals that 

the percentage of communication time is less for bigger 

matrices. As for example, for 432 processors, the percentage 

of overhead is 50% for 1M matrix whereas it accounts for 

70% in case of 100K. This communication overhead could be 

significantly reduced if we had InfiniBand network for inter-

connection of nodes. We also measured the statistics of 

average communication delay per process for different matrix 

sizes (Fig. 10). It is evident that the increase of processors 

implies to a decrease of average communication delay, which 

is the reason why our algorithm scales better than other 

existing 1D algorithms.  



 
Fig. 9 Comparison of Communication Overhead 

 

 
Fig. 10 Average Communication Delay 

 

C. Computation vs. Communication Time 

Fig 11 shows the ratio of computation and communication 

time for various matrix dimensions. It is observed that the 

portion of computation time reduces significantly with the 

increase of number of processors, while the total computation 

time does not reduce in that respect. Initially the portion of 

computation is much higher that that of computation. As the 

number of processor increase, computational cost tends to 

decrease fast. After a certain time, communication overhead 

dominates the computation time, which makes the algorithm 

scalable up to a certain number of processors beyond which 

the efficiency does not improve with respect to processors 

increase.  In our case, this scalability might be bounded by a 

few thousand processors for larger matrices.  
 

D. Impact of Hardware Architecture 

The results with our algorithm displayed here are mostly 

within homogeneous computing system architecture. Our 

cluster topology routes over 2 different speed Ethernet 

switches (1Gb and 10Gb) which impacts on communication 

latency and we strongly anticipate that this proposed algorithm 

will be further up-scaled in case of ultra low latency switches 

such as InfiniBand. Moreover, we experienced inconsistent 

results in execution time, speed up and communication latency 

while running on heterogeneous computational resources i.e., 

on differing processing speed, on node or off node process etc. 

Our algorithm performance on heterogeneous systems 

significantly reflects the impact of internode or intra-node 

memory bandwidth. However, ratio of communication and 

computational time is significant and our scalability does 

clearly improve with same number of process on larger matrix 

dimension, as matrix with dimension of 1M performs better 

than that of 100K and 500K. 

 

 
(a) Matrix Dimension=100K 

 
(b) Matrix Dimension=500K 

 
(c) Matrix Dimension=1M 

Fig. 11 Communication vs. Computation time for (a) 100K (b) 500K and (c) 
1M Matrix 



VI. CONCLUSION 

In this paper we present novel 1D algorithm for parallel sparse 

matrix-matrix multiplication (PSpGEMM) using a distributed 

hash-list. Our algorithm scales linearly up to the maximum 

limit of our available computational resources. This algorithm 

performs equally for both structured and un-structured sparse 

matrices with a regular distribution of non-zero elements over 

the rows and columns. The speedup achieved using our 

algorithm is so far better that any other existing 1D 

algorithms. The computational delay can be further reduced 

with efficient hash function that can distribute the elements 

uniformly over the hash table. Also, the communication 

latency will be significantly reduced in InfiniBand network 

resulting higher efficiency and scalability.  Since our final 

result matrix is stored distributed over the processes, we can 

iteratively multiply the result to compute chain multiplication 

of an input matrix. We are currently extending our algorithm 

to utilize the benefits of hybrid parallel environment with 

OpenMP. 
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