
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/287507202

Parallel	sparse	matrix-matrix	multiplication:	A
scalable	solution	with	1D	algorithm

Article		in		International	Journal	of	Computational	Science	and	Engineering	·	January	2015

DOI:	10.1504/IJCSE.2015.073498

CITATIONS

0

READS

28

5	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Orthogonal	Polynomial	Projection	Quantification	method	View	project

ETSU	Capstone	Project	View	project

Mohammad	Asadul	Hoque

East	Tennessee	State	University

27	PUBLICATIONS			129	CITATIONS			

SEE	PROFILE

Daniel	Vrinceanu

Texas	Southern	University

120	PUBLICATIONS			966	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Mohammad	Asadul	Hoque	on	26	October	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/287507202_Parallel_sparse_matrix-matrix_multiplication_A_scalable_solution_with_1D_algorithm?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/287507202_Parallel_sparse_matrix-matrix_multiplication_A_scalable_solution_with_1D_algorithm?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Orthogonal-Polynomial-Projection-Quantification-method?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ETSU-Capstone-Project?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Hoque8?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Hoque8?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/East_Tennessee_State_University?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Hoque8?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Vrinceanu?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Vrinceanu?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Texas_Southern_University?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Vrinceanu?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Hoque8?enrichId=rgreq-5e82b78fff4994369f0be76acbe4f6ee-XXX&enrichSource=Y292ZXJQYWdlOzI4NzUwNzIwMjtBUzo1NTM4MTk5OTU1NTM3OTJAMTUwOTA1MjM4NDEyMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Parallel Sparse Matrix-Matrix Multiplication:

A Scalable Solution with 1-D Algorithm

Mohammad Hoque1, Md. Rezaul Raju2, Christopher Tymczak3, Daniel Vrinceanu4, Kiran Chilakamarri5

Department of Computing, East Tennessee State University1

Center for Research on Complex Networks, Texas Southern University2,3,4,5

hoquem@etsu.edu1; m.raju7957@student.tsu.edu2; {tymczakcj3, vrinceanud4, chilakamarrikb5}@tsu.edu

Abstract— This paper presents a novel implementation of

parallel sparse matrix-matrix multiplication using distributed

memory systems on heterogeneous hardware architecture. The

proposed algorithm is expected to be linearly scalable up to

several thousands of processors for matrices with dimensions

over 106 (million). Our approach of parallelism is based on 1D

decomposition and can work for both structured and

unstructured sparse matrices. The storage mechanism is based

on distributed hash lists, which reduces the latency for accessing

and modifying an element of the product matrix, while reducing

the overall merging time of the partial results computed by the

processors. Theoretically, the time and space complexity of our

algorithm is linearly proportionate to the total number of non-

zero elements in the product matrix C. The results of the

performance evaluation show that the algorithm scales much

better for sparse matrices with bigger dimensions. The speedup

achieved using our algorithm is much better that other existing

1D algorithm. We have been able to achieve about 500 times

speedup with only 672 processors. We also identified the impact

of hardware architecture on scalability. (Abstract)

Keywords—MPI, Scalable, Sparse Matrix, Parallel Algorithm,

Distributed Computing. (key words)

I. INTRODUCTION

Numerical solutions of many critical problems reduce to

various forms of matrix operations, in part or in full. Matrix-

matrix multiplication has been deemed as the fundamental

building block for solving many problems in almost every

area of science and engineering. Many of these problems

involve large eigenvalue problems or extremely sparse

systems of linear equations. Hence, determining the product of

two sparse matrices is a basic problem in combinatorial and

scientific computing.

Applications of sparse matrix-matrix multiplication are

scattered in various dimensions of research like vehicular ad

hoc networks, multi-grid methods, clustering algorithms,

delay tolerant networks, quantum mechanics, context-free

languages and computational fluid dynamics. The parallel and

distributed computing paradigm has minimized the bottleneck

of large-scale data manipulation and computing needs.

Therefore, the computational scientists heavily rely on the

efficiency of parallel algorithms on linear algebra operations.

Existing libraries for parallel dense matrix multiplication are

proven to perform close to optimal efficiency. However,

parallel sparse matrix-matrix multiplication algorithms are still

considered as a research problem for both distributed and

shared memory environment. It has been shown that current

parallel algorithms for multiplying sparse matrices does not

scale well for higher number of processors even though they

perform reasonably well for limited number of processors

[1,2]. In most cases, the scaling is deteriorated by the

increased process-to-process communication costs. On the

other hand the parallel execution time is also dependent on the

implementation of data structures and storage mechanism. In

addition, heterogeneous hardware architecture is a major

concern for load balancing. Though heterogeneous systems

i.e., general purpose x86 CPUs coupled with GPUs are

gaining interests in the high performance community for

accelerating some specific workload, incorporation of

heterogeneous systems drive to additional difficulties in terms

of programming interfaces, data distribution and

communication among the heterogeneous processing elements

[9]. Further, the complexity of sparse algorithms is highly

dependent on the sparsity and distribution pattern of nonzero

elements of the input matrices [2,3]. Hence, due to all these

factors, achieving scalability for parallel sparse matrix

multiplication algorithms is a very challenging problem.

In this paper we describe a novel implementation of parallel

sparse matrix-matrix multiplication that makes use of

distributed hash lists ensuring an efficient storage mechanism.

This implementation is tested on the Linux clusters of the

Texas Southern University HPC Center (TSU-HPCC) [8]

using inputs of randomly generated but structured square

matrices up to a maximum dimension of 106 (1 Million). Our

algorithm has shown a trend for linear scaling up to the

maximum limit of our homogenous computing resources,

which is a total of 672 cores of processor. The maximum

speedup attained using our resources was about 500 which is

so far the best performance for any sparse matrix

multiplication algorithm given the maximum number of

cores. Also the average MPI communication overhead per

process decreases with the increase of processors, which is the

underlying factor for achieving the scalability with our

algorithm. The scalability tends to be better for larger

matrices. Additionally, the algorithm can perform equally for

both structured and non-structured matrices.

This research if funded by the NSF CREST project. (Grant No. 1137732)

The following sections are organized as follows: section II

provides an overview of the problem definition, notations and

terminology used in this paper; section III describes the

previous research within this and related fields; section IV

describes implementation details and the algorithm, followed

by the performance evaluation in section V. Finally we

conclude in section VI indicating our future extensions of this

algorithm and open issues for further investigation.

II. PROBLEM DEFINITION, TERMINOLOGY AND NOTATIONS

We consider quite similar terminology adopted by Buluc et.

al. [4]. Our goal is to compute C = AB, where A and B are the

two input sparse matrices. The dimension of A and B are M ×

K and K × N respectively. For simplicity, we will be using

square matrices (M = K = N) for analysis purpose, but the

proposed algorithms can easily operate on rectangular

matrices. Let,

p = total number of processors

γ = cost of one floating-point operation (nanoseconds)

α = cost of insertion into a vector

β = inverse bandwidth (nanoseconds per word)

 = cost of insertion into hash list

nnz(A) = number of nonzero elements in A

A(:, i) = ith column of A

A(i, :) = ith row of A

A(i, j) = the element at the (i, j)th position of A

flops = total number of operations to compute AB.

c = avg. number of nonzero elements per row/column

𝑁𝑖 = Starting column/row index for process pi

Our algorithm assumes that the sparsities/densities of the input

matrices known a priori. To make the analysis simple, we

assume that both the input matrices A and B have equal

sparsity. Hence, nnz(A) = nnz(B) = cN. For our input matrices,

we considered c=75 for square matrices with a dimension of

N=106 (1 Million) and c=152 for N=105.

Our matrix multiplication algorithm is based on the Outer

Product calculation approach. Fig.1 shows a simple example

of distributed matrix multiplication using outer product with 4

parallel processors.

Fig. 1: Distributed multiplication using Outer Product

As shown in the figure, each of the processors 𝑃𝑖 is assigned

with block of columns, 𝑁𝑖 to 𝑁𝑖+1 − 1 and compute 𝐶𝑖 in

parallel, where,

𝐶𝑖 = ∑ 𝐴(: , 𝑘) × 𝐵(𝑘, :)

𝑁𝑖+1−1

𝑘=𝑁𝑖

(1)

After calculating the results of individual portion, the final

result is merged by combining all the partial results from the

parallel processors. Hence, the final product matrix,

𝐶 = ∑ 𝐶𝑖

𝑝

𝑖=1

= ∑ ∑ 𝐴(: , 𝑘) × 𝐵(𝑘, :)

𝑁𝑖+1−1

𝑘=𝑁𝑖

𝑝

𝑖=1

(2)

III. RELATED WORK

The Generalized Sparse Matrix-Matrix Multiplication problem

(SpGEMM) has been extensively investigated by Gustavson et

al. [5] which described the first classical serial algorithm for

SpGEMM in 1978. This algorithm stores the elements of the

matrices in Compressed Sparse Column (CSC) format and has

a complexity of O(flops + nnz + n), which is proven to be

optimal for flops max{nnz,n}. Later, it was used by many

mathematical software and libraries like MATLAB [6],

CSparse [7] etc. The lower bound of time complexity for any

sequential SpGEMM is which is met by Gustavson’s

algorithm [1]. Hence we consider the sequential work (W) to

be equal to for our speedup analysis.

On the other hand, the parallel version of SpGEMM (known

as PSpGEMM) has not been developed to the efficiency of its

dense matrix counterpart. While there have been significant

progress in development of parallel dense linear algebra

libraries like PBLAS [18], ScaLAPACK [20] etc. within the

last couple of decades, but the sparse libraries haven’t reached

up to that level of enrichment mostly due to the lack of

scalability. Most of the current sparse algorithms are

implemented on a distributed memory environment using MPI

communication. As of today, to the best of our knowledge,

there hasn’t been any PSpGEMM algorithm implemented on

hybrid architecture that combines the benefits of both

distributed as well as shared memory environment using MPI

and OpenMP in concert. Other variants of programming tools

in shared memory architecture like ccNUMA, PGAS are not

yet considered for sparse matrix-matrix multiplication.

However, several hybrid parallel algorithms have been

developed for sparse matrix-vector multiplication [15,17] that

is basically a special case of sparse matrix-matrix

multiplication and has fewer constraints. In these cases, the

algorithm needs to focus primarily only on the single sparse

matrix on the left while the vector is usually dense and the

multiplication operation generates a single vector as output

making the storage management with the data structures

greatly simplified.

Siegel et al. [9] described a co-design approach for

implementing PSpGEMM efficiently on a heterogeneous

cluster using both multicore CPUs and GPUs. Their algorithm

was based on the original Gustavson’s algorithm [5]. Their

work dealt with dynamically optimizing the load balancing for

GPUs. Unfortunately, they have also shown that no speedups

can be achieved with their implementation for hyper-sparse

matrices where the density of nonzeros are less than 0.01%.

In the domain of distributed memory environment, Buluc et

al. [1,2,3,4] has contributed significantly for examining the

scalability of different implementations of PSpGEMM with

1D, 2D and 3D decomposition. They are the first to develop

any 2D or 3D algorithm for PSpGEMM, while as of today, no

other algorithm has been implemented using 2D or 3D

decomposition. All of their algorithms are based on inner

product and use a novel data-structure called Doubly

Compressed Sparse Column (DCSC), which ensures a storage

complexity of 𝑂(𝑛𝑛𝑧). Unfortunately, their 1D algorithms are

not scalable beyond a certain number of processors, while 2D

algorithms are [1,3]. The main reason for 1D algorithms not

being scalable is the increased MPI communication overhead

[2]. One of the problems with their 1D algorithm is that, it

requires each of the parallel processors to broadcast an entire

row of B matrix during every iteration. This causes a storm of

communication that eventually makes the algorithm un-

scalable. However, their 2D algorithms (Sparse SUMMA and

Sparse CANNON) do show a better scaling performance in

terms of communication overhead and overall execution

time. In contrast to their 1D approach, our algorithm uses an

outer product method where each processor conducts point-to-

point communication with others for merging the intermediate

results. We will now describe the computational resources for

which we implemented our novel algorithm.

IV. ALGORITHM DESCRIPTION

A. Data-Structure and Storage Mechanism

1) Distributed Hashlist

We use distributed hash lists for storing the matrices. Open

hashing technique is considered with an initial table size

varying from N to 10N. The hash key is composed of the row

and column indexes of the non-zero elements of the matrices.

Each element is stored as a Node-type data structure

containing <row, column, value> tuple. The reason for not

choosing closed hashing or open addressing type of hash list is

to avoid frequent resizing of the product matrix. Even though

the sparsity of the input matrices are known a priori, the

product matrix belonging to each processor may have a

varying number of non-zero elements ranging from 𝑁
𝑝⁄ to

𝑐2𝑁
𝑝⁄ . Each incidence of table resizing leads to redistribution

of the elements of the entire list along the modified address

space. This is a costly operation having 𝑂(ℎ𝑎𝑠ℎ𝑠𝑖𝑧𝑒)

complexity which can occur more than once for each

processor. That is the reason we considered open hashing to

eliminate the cost of frequent resize.

2) Auxiliary Storage

MPI communication does not support non-sequential memory

data transfer. As open hashing mechanism involves separate

chains to resolve collisions, we had to define auxiliary storage

for MPI communication. Once every processor completes the

computation of individual portion of the result, it then

transfers the non-contiguous hash-list of C matrix into

contiguous chunks of memory. For that we utilize the benefits

of ‘vector’ type data structures that implicitly support dynamic

contiguous memory allocation. The total hash-list is divided

into different queues, 𝑄𝑗 based on the column index. Each

processor needs to perform this step only once after finishing

the computation. Hence, the total storage required for storing

and exchanging the C matrix by every processor is
(2𝑐2𝑁)

𝑝⁄

that meets the upper bound of optimal storage requirement

(
𝑐2𝑁

𝑝
) .

B. Details Steps of Algorithm

The input matrices A and B are initially stored as compressed

sparse columns (CSC) and compressed sparse rows (CSR)

respectively. These data structures are implemented as arrays

of vectors. Each processor has ⌈𝑁
𝑝⁄ ⌉ vectors from both A and

B that corresponds to ⌈𝑁
𝑝⁄ ⌉ columns of A and ⌈𝑁

𝑝⁄ ⌉ rows of

B. The entire multiplication algorithm has three major steps to

compute the final product matrix C, where the result matrix C

is left distributed across the processors.

1) Partial Result Calculation

Let 𝑁𝑖 be the starting column index for the block of columns

handled by processor 𝑃𝑖 . During this step each of the

processors, 𝑃𝑖 iterates over k for a total of ⌈𝑁
𝑝⁄ ⌉ iterations and

computes a Cartesian product of the column vector 𝐴(: , 𝑘)

with the row vector𝐵(𝑘, :), generating a sub-matrix of𝐶𝑖. Each

processor contains the chunk of data comprising of ⌈𝑁
𝑝⁄ ⌉

columns of A and ⌈𝑁
𝑝⁄ ⌉ rows of B. If there are 𝑐1 non-zero

elements in 𝐴(: , 𝑘) and 𝑐2 non-zero elements in 𝐵(𝑘, ;) then

the number of elements added to the 𝐶𝑖 sub-matrix will

be𝑐1𝑐2. For simplicity of analysis, we assume 𝑐1 = 𝑐2 = 𝑐. As

this operation is done for ⌈𝑁
𝑝⁄ ⌉ times, the total number of

floating point operations in this step will be ⌈𝑁
𝑝⁄ ⌉𝑐1𝑐2, which

yields a time-complexity of 𝑂 (𝑐2𝑁
𝑝⁄).

Fig. 2: Multiplication handled by Pi

Fig. 3: Inter-process communication pattern (p = 4)

Fig. 4: Proposed Algorithm

2) Exchange of Partail Results

In this step every processor distributes a portion of the local

result 𝐶𝑖 to all other processors. This is demonstrated in Fig. 3

where one of the 𝑝 processors, 𝑃2 sends the partial results

stored in hash list 𝐶2 to 𝑃1, 𝑃3and 𝑃4. The total size of hash list

𝐶2 is equal to 𝑐2 ⌈
𝑁

𝑝
⌉ which is further distributed into 𝑝

column-wise blocks. Every processor 𝑃𝑖 only accumulates the

block of columns in 𝐶𝑖 that includes columns indexing from 𝑁𝑖

to (𝑁𝑖 + ⌈
𝑁

𝑝
⌉). The total amount of data sent by each

processor is equal to (𝑝 − 1) ×
𝑐2⌈

𝑁

𝑝
⌉

𝑝
 which is𝑂(

𝑐2𝑁

𝑝
). Hence,

the complexity of this step is also equal to 𝑂 (𝑐2𝑁
𝑝⁄).

As mentioned previously, the exchange of results imposes

some extra overhead of queuing the hash list into (𝑝 − 1)

vectors of consecutive memory data structure. While

accessing each element of 𝐶𝑖, the column index is divided by

⌈
𝑁

𝑝
⌉ to get the appropriate index j of the sub-hash list 𝐶𝑖

𝑗
 that is

inserted into the vector 𝑄𝑗 . This 𝑄𝑗 vector is communicated

over MPI and sent to 𝑃𝑗.

3) Merging results

Once each processor 𝑃𝑖 receives the partial result (𝐶𝑖
𝑗
) from

each of the other processors (𝑃𝑗), it merges with its own hash

list of 𝐶𝑖. Each partial result (𝐶𝑖
𝑗
) contains

𝑐2⌈
𝑁

𝑝
⌉

𝑝
 elements on an

average. Hence, for p-1 processors, the total merging from this

step also requires a total of 𝑂 (𝑐2𝑁
𝑝⁄) operations. The result

matrix is kept distributed over p processes. Fig. 4 describes the

complete step-by-step description of the algorithm.

V. PERFORMANCE EVALUATION

We have evaluated the performance of our algorithms on

TSU-HPCC clusters. Our High Performance Computing

center has medium scale computational resources, which

includes two Linux clusters: Ares and Hades. Fig. 5 below

shows the topology of the two clusters and Fig. 6 shows the

actual racks where the cluster is hosted.

Fig. 5 Topology of ARES and HADES

Fig. 6 TSU HPCC clusters

Ares has 16 dual-slot quad-core nodes with Intel Xenon 5350

2.0 GHz processors with 8 Gigabytes of memory per node.

Hades has i) 8 dual slot hyper threaded quad core nodes with

the Intel E5520 2.33 GHz Xeon processor with 12 gigabytes

of memory; ii) 28 dual slot hyper threaded 6 core nodes with

the Intel EE5645 2.40GHz Xeon Processor with 24 gigabytes

of memory.

The nodes are connected via two different switches, one is a

standard 1Gb Ethernet switch and the other through 10

Gigabit Ethernet using an ultra low latency Force10 switch.

The full parallel cluster has a total of 944 virtual cores and a

total memory of 996 Gigabytes, with a theoretical peak speed

of 5.0 Teraflops. Due to the heterogeneity of the nodes and

processors we mainly used the homogenous nodes for

scalability evaluation, which comprised of the 28 EE5645

nodes of HADES, having a total of 672 cores. For some of

the cases we have also included the 8 E5520 nodes that made

a total of 800 processors to be used in our evaluation.

A. Scalability

Our algorithm shows linear scalability up to the maximum

number of homogeneous processors available in our HPCC. In

our experiment, the speedup is calculated based on

multiprocessor execution time compared with single processor

execution. Figure 7 shows the scaling performances for matrix

dimension of 1M x 1M. The left vertical axes are in

logarithmic scale. It is evident from the results that for larger

matrices the algorithm performs much better, as it can reach

up to ~500 times speedup with 672 processors for 1M matrix.

The speedup also increases linearly with the increase of

number of processors. The trend shown by the results give us

an impression that the algorithm might prove to be linearly

scalable up to at least few thousand processors. Fig. 8 shows a

comparison of speedup for different matrix sizes. While the

100K matrix does scale linearly, the speedup, however, is

much less compared to the 1M matrix. The main reason of

better efficiency for larger matrices can be understood from

the percentage of total execution time spent in

communication, which is elaborated in the next subsection.

Fig. 7 Scalability of 1M Matrix

Fig. 8 Comparison of Speedup for different Matrix Size

B. Communication Overhead

We evaluated the MPI communication overheads for all the

three different matrix sizes (1M, 500K, 100K). Fig. 9 shows

the percentage of communication overhead for different

matrix sizes. As single process yields serial execution, there is

no communication overhead in this case. As applicable for any

MPI based distributed 1D algorithm, the percentage of MPI

communication overhead increases with the increment of

number of processors. A closer look into Fig. 9 reveals that

the percentage of communication time is less for bigger

matrices. As for example, for 432 processors, the percentage

of overhead is 50% for 1M matrix whereas it accounts for

70% in case of 100K. This communication overhead could be

significantly reduced if we had InfiniBand network for inter-

connection of nodes. We also measured the statistics of

average communication delay per process for different matrix

sizes (Fig. 10). It is evident that the increase of processors

implies to a decrease of average communication delay, which

is the reason why our algorithm scales better than other

existing 1D algorithms.

Fig. 9 Comparison of Communication Overhead

Fig. 10 Average Communication Delay

C. Computation vs. Communication Time

Fig 11 shows the ratio of computation and communication

time for various matrix dimensions. It is observed that the

portion of computation time reduces significantly with the

increase of number of processors, while the total computation

time does not reduce in that respect. Initially the portion of

computation is much higher that that of computation. As the

number of processor increase, computational cost tends to

decrease fast. After a certain time, communication overhead

dominates the computation time, which makes the algorithm

scalable up to a certain number of processors beyond which

the efficiency does not improve with respect to processors

increase. In our case, this scalability might be bounded by a

few thousand processors for larger matrices.

D. Impact of Hardware Architecture

The results with our algorithm displayed here are mostly

within homogeneous computing system architecture. Our

cluster topology routes over 2 different speed Ethernet

switches (1Gb and 10Gb) which impacts on communication

latency and we strongly anticipate that this proposed algorithm

will be further up-scaled in case of ultra low latency switches

such as InfiniBand. Moreover, we experienced inconsistent

results in execution time, speed up and communication latency

while running on heterogeneous computational resources i.e.,

on differing processing speed, on node or off node process etc.

Our algorithm performance on heterogeneous systems

significantly reflects the impact of internode or intra-node

memory bandwidth. However, ratio of communication and

computational time is significant and our scalability does

clearly improve with same number of process on larger matrix

dimension, as matrix with dimension of 1M performs better

than that of 100K and 500K.

(a) Matrix Dimension=100K

(b) Matrix Dimension=500K

(c) Matrix Dimension=1M

Fig. 11 Communication vs. Computation time for (a) 100K (b) 500K and (c)
1M Matrix

VI. CONCLUSION

In this paper we present novel 1D algorithm for parallel sparse

matrix-matrix multiplication (PSpGEMM) using a distributed

hash-list. Our algorithm scales linearly up to the maximum

limit of our available computational resources. This algorithm

performs equally for both structured and un-structured sparse

matrices with a regular distribution of non-zero elements over

the rows and columns. The speedup achieved using our

algorithm is so far better that any other existing 1D

algorithms. The computational delay can be further reduced

with efficient hash function that can distribute the elements

uniformly over the hash table. Also, the communication

latency will be significantly reduced in InfiniBand network

resulting higher efficiency and scalability. Since our final

result matrix is stored distributed over the processes, we can

iteratively multiply the result to compute chain multiplication

of an input matrix. We are currently extending our algorithm

to utilize the benefits of hybrid parallel environment with

OpenMP.

REFERENCES

1. Buluc, A., & Gilbert, J. R. (2008). Challenges and advances in parallel

sparse matrix-matrix multiplication. Parallel Processing, 2008. ICPP'08.

37th International Conference on, 503-510.
2. G. Ballard, A. Buluc, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz

and S. Toledo, Communication Optimal Parallel Multiplication of

Sparse Random Matrices, Proceedings of ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2013.

3. Buluc, A., & Gilbert, J. R. (2012). Parallel sparse matrix-matrix

multiplication and indexing: Implementation and experiments. SIAM
Journal on Scientific Computing, 34(4), C170-C191.

4. Buluç, A., & Gilbert, J. R. (2010). Highly parallel sparse matrix-matrix

multiplication. UCSB Technical Report, June 2010.
5. Fred G. Gustavson. Two fast algorithms for sparse matrices:

Multiplication and permuted transposition. ACM Transactions on

Mathematical Software, 4(3):250{269, 1978.

6. John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in

Matlab: Design and implementation. SIAM Journal of Matrix Analysis
and Applications, 13(1):333{356, 1992.

7. Timothy A. Davis. Direct Methods for Sparse Linear Systems. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2006.
8. High Performance Computing Center at Texas Southern University,

http://hpcc.tsu.edu

9. Siegel, J.; Villa, O.; Krishnamoorthy, S.; Tumeo, A.; Xiaoming Li,
"Efficient sparse matrix-matrix multiplication on heterogeneous high

performance systems," IEEE International Conference on Cluster

Computing Workshops and Posters, vol., no., pp.1,8, 20-24 Sept. 2010
10. Choi, J. (1997). A new parallel matrix multiplication algorithm on

distributed-memory concurrent computers. High Performance

Computing on the Information Superhighway, 1997. HPC Asia'97, 224-
229.

11. Chorley, M. J., & Walker, D. W. (2010). Performance analysis of a

hybrid MPI/OpenMP application on multi-core clusters. Journal of
Computational Science, 1(3), 168-174.

12. Elmroth, E., Gustavson, F., Jonsson, I., & Kågström, B. (2004).

Recursive blocked algorithms and hybrid data structures for dense
matrix library software. SIAM Review, 46(1), 3-45.

13. Kamal, H., & Wagner, A. (2012). Added concurrency to improve MPI

performance on multicore. Parallel Processing (ICPP), 2012 41st
International Conference on, 229-238.

14. Rabenseifner, R., Hager, G., & Jost, G. (2009). Hybrid MPI/OpenMP

parallel programming on clusters of multi-core SMP nodes. Parallel,
Distributed and Network-Based Processing, 2009 17th Euromicro

International Conference on, 427-436.
15. Schubert, G., Fehske, H., Hager, G., & Wellein, G. (2011). Hybrid-

parallel sparse matrix-vector multiplication with explicit communication

overlap on current multicore-based systems. Parallel Processing Letters,
21(03), 339-358.

16. Yuster, R., & Zwick, U. (2005). Fast sparse matrix multiplication. ACM

Transactions on Algorithms (TALG), 1(1), 2-13.
17. ZIAVRAS, S. G., & MANIKOPOULOS, C. N. Matrix multiplication on

an experimental parallel system with hybrid architecture, in proceedings

of 4th World CSCC 2000, Athens, Greece.
18. Almadena Chtchelkanova, John Gunnels, Greg Morrow, James Overfelt,

and Robert A. van de Geijn. Parallel implementation of BLAS: General

techniques for Level 3 BLAS. Concurrency: Practice and Experience,
9(9):837-857, 1997.

19. Edith Cohen. Structure prediction and computation of sparse matrix

products. Journal of Combinatorial Optimization, 2(4):307-332, 1998.
20. ScaLAPACK, http://www.netlib.org/scalapack/

View publication statsView publication stats

https://www.researchgate.net/publication/287507202

