<u>Termination of Stars</u>

Some Quantum Concepts

• Pauli Exclusion Principle:

> Effectively limits the amount of certain kinds of stuff that can be crammed into a given space (particles with "personal space").

- When densities approach this limit, matter becomes "degenerate".
- Gas pressure depends on density only, and not temperature.

• Heisenberg Uncertainty Principle:

Cannot simultaneously know both particle position and momentum exactly. Particles can have large speeds when densely packed, and so high pressure, regardless of temperature.

Wave-Particle Duality: The Two-Slit Experiments

Particles -Mud stripes Waves fringe pattern Electrons - both!!!

Types of Degeneracy

- Electron Degeneracy:
 - ☆Atoms are crammed.
 - *Occurs at ρ ~10⁶ g/cm³.
 - White Dwarf stars halt collapse via this

pressure.

Quarks. Neutrinos. Mesons. All those damn particles you can't see. <u>That's</u> what drove me to drink. But <u>now I can</u> see them.

- Neutron Degeneracy:
 If gravity is too strong, electrons forced into nucleus with protons to make neutrons.
 - Now nuclei are crammed.
 - *Occurs at ρ ~10¹⁵ g/cm³!
 - This pressure supports Neutron stars.

Stellar Corpses – Low Mass Stars

Stars with M < 8M_o become White Dwarfs (WDs)

- 1. Chandrasekhar Limit: $M_{WD} < 1.4M_o$, otherwise gravity overwhelms electron degeneracy pressure
- 2. For normal stars, bigger M yields bigger R, but opposite for WDs
- 3. Radius is fixed, and WD still glows, so it just continues to cool and fade (i.e., temperature drops over time)

White Dwarfs in Space

White Dwarf Stars in M4 PRC95-32 · ST Scl OPO · August 28, 1995 · H. Bond (ST Scl), NASA

HST · WFPC2

<u>The Chandrasekhar Limit for</u> <u>White Dwarf Stars</u>

<u>Mass-Radius for White Dwarfs</u>

<u>White Dwarf Tracks in the HRD</u>

<u>Massive Star at Life's End</u>

A Supernova

Supernova Types

- Type Ia
 - Lacks hydrogen
 - Consists of a WD in a binary with mass transfer
 - Used as standard candle
- Type II
 - Shows hydrogen
 - Explosion of a single massive star

<u>WDs in Binaries</u>

- Mass can transfer from a normal star to a WD, resulting in an <u>accretion disk</u>.
- This is a disk of gas orbiting the WD with gas slowly "seeping" inward to the WD.
- NOVAE: Hydrogen gas accumulates and heats up until fusion switches on. Leads to an explosion and ejection of mass. Repeats.
- SUPERNOVAE: (Type Ia) Transfer is rapid so fusion is ongoing. Mass accumulates until Chandra limit is exceeded which leads to a catastrophic explosion. SNe can become brighter than a galaxy for a time.

<u>Sketch of a Cataclysmic Variable</u>

<u>Stellar Corpses – High Mass Stars</u>

If 8 M_o < M < 25 M_o , stars explode as Type II SNe

- Nuclear fusion of elements up to iron
- Central core becomes a WD, then a NS. Gravitational contraction is resisted, and a violent "shudder" lifts outer gas layers
- LOTS of neutrinos made to accelerate material away
- A NS remains, with
 - R ~ 10–15 km
 - M \sim 1.5-3 $\rm M_{o}$
 - Fast rotation and strong magnetic fields

<u>Historical Supernovae</u>

1006	Chinese
1054	Chinese
1572	Brahe
1604	Kepler
1987A	in LMC

- 1967, first Pulsar was discovered
- These are fast rotating NS's that beam radiation out (nearly) along the magnetic poles
- The effect is like a lighthouse Beacon

<u>Bizarre Rings Surrounding SN1987A</u>

Supernova 1987A Rings

Hubble Space Telescope Wide Field Planetary Camera 2

Stages in a Supernova

A Lone Neutron Star

Isolated Neutron Star RX J185635-3754HST • WFPC2PRC97-32 • ST Scl OPO • September 25, 1997F. Walter (State University of New York at Stony Brook) and NASA

Light House Effect

The Pulsar Light Curve

Pulse Variations with Wavelength

Multiwavelength light curves of the seven pulsars detected with EGRET. A flat line in the radio, optical or X-ray bands means that no such pulsation has been detected. GLAST should provide gamma-ray light curves for several dozen pulsars, which combined with the pulse shapes measured at other energies will severely constrain theoretical models for pulsar emission.

Pulsars Seen in Gamma-Rays

<u>Mass-Radius for Neutron Stars</u>

- Right shows a massradius relation for neutron stars.
- Curves are for different models
- Frequencies relate to rotation periods and help to constrain neutron star sizes and structure.
- Shaded regions of figure are observationally disallowed.

The Evolution of Pulsars

Normal Pulsars

<u>Stellar Corpses – Real High Mass</u>

- For M > 25M_o, stars also explode as Type II SNe, but the remnant mass exceeds the NS mass limit of ~ 3M_o
 Gravity wins!
- Remnant collapses to a BLACK HOLE (BH)
- A BH is an object with a sufficient concentration of mass that light cannot escape it. (Does not mean a BH is a cosmic "vacuum".)

<u>Schwarzschild Radius</u>

- Recall escape speed:
- The Sch. Radius (R_s) is the distance at which v_{esc}=c for a BH:

 Nothing travels faster than light, so anything passing closer than R_s will not re-emerge!

 $v_{esc}^2 = \frac{2GM}{M}$ $c^2 = \frac{2GM}{R_{\rm s}}$ so, $R_S = \frac{2GM}{c^2}$

The Event Horizon

How to Detect?

- Although small and faint/invisible, NS's and BHs <u>do</u> influence their surroundings
- Can infer their presence in binaries from the motion of a visible star
- Also, in binaries these compact objects can draw matter from the normal star to form an accretion disk, with associated X-ray emission
- Some good examples are Cyg X-1 and A0620-00

Cartoon of Cygnus X-1

Signature for the presence of a black hole

Black Hole Candidates

Black Holes vs Neutron Stars

The Gamma-Ray Bursts

Hawking Radiation: Can Black Holes Glow?

Luminosity of Hawking Radiation

