<u>Astronomical Study:</u> <u>A Multi-Perspective Approach</u>

Overview of Stars

- Motion
- Distances
- Physical Properties
- Spectral Properties
 - Magnitudes
 - Luminosity class
 - Spectral trends
- Binary stars and getting masses
- Stellar census

Stars Move!

Motion through Space

- Everything moves!
- From an Earth perspective, velocity has a component toward and transverse
- Radial velocity is toward or away – measure this with the Doppler effect
- Tangential velocity is transverse in the sky

Copyright © 2005 Pearson Prentice Hall, Inc.

Proper motion refers to the apparent change of position of an object in the sky. This is a result of the trangential (transverse) space motion of stars. This example is for Barnard's star.

Distances: Stellar Parallax

As seen in January

As seen in July

- Distances are important for understanding stars
- Use geometry to infer distances to stars
- Applies when star is somewhat nearby
- Based on Earth's orbit

Copyright © 2005 Pearson Prentice Hall, Inc.

Stars Come in Colors

(Canary Islands)

Hertzsprung-Russell Diagrams

- The "HRD" represents one way of grouping stars
- Three versions:
 - Theoretical temperature plotted against luminosity
 - Observational "color" plotted against apparent brightness
 - A 3rd version plots spectral class for color or for temperature

Spectral Type	Example(s)	Temperature Range	Key Absorption Line Features	Brightest Wavelength (color)	Typical Spectrum
0	Stars of Orion's Belt	>30,000 K	Lines of ionized helium, weak hydrogen lines	<97 nm (ultraviolet)*	bydrogen
В	Rigel	30,000 K-10,000 K	Lines of neutral helium, moderate hydrogen lines	97–290 nm (ultraviolet)*	в
А	Sirius	10,000 K-7,500 K	Very strong hydrogen lines	290–390 nm (violet)*	
F	Polaris	7,500 K-6,000 K	Moderate hydrogen lines, moderate lines of ionized calcium	390–480 nm (blue)*	
G	Sun, Alpha Centauri A	6,000 K-5,000 K	Weak hydrogen lines, strong lines of ionized calcium	480–580 nm (yellow)	G CALLER CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT
к	Arcturus	5,000 K-3,500 K	Lines of neutral and singly ionized metals, some molecules	580–830 nm (red)	
М	Betelgeuse, Proxima Centauri	<3,500 K	Molecular lines strong	>830 nm (infrared)	M LI LI II LI II lonized literium sodium literium calcium cxide cxide

Table 16.1 The Spectral Sequence

*All stars above 6,000 K look more or less white to the human eye because they emit plenty of radiation at all visible wavelengths.

Spectral Sequence in Visible Light

Detailed Line IDs

Just for show ...

The Largest Known Star: This red hypergiant with about 35 times the Sun's mass is about 2600x bigger than the Sun (like Jupiter's orbit)

Observational HRD

Astronomers can easily construct color-magnitude diagrams which are just like a HRD, because color relates to temperature and magnitude to luminosity. For a bunch of stars at the same distance, brighter ones are more luminous (and vice versa).

Magnitudes

Magnitudes are a logarithm (I.e., powers of ten) approach to specifying brightnesses

Apparent magnitude

 $m = -2.5 \log (flux) + constant$

so m relates to apparent brightness

Absolute magnitude M is m at a particular distance, namely 10 parsecs, so

 $M = -2.5 \log [L / 4\pi (10 \text{ pcs})^2] + \text{constant}$ so M relates to intrinsic brightness, in terms of luminosity

Distance modulus is a way of relating an object's distance to its magnitude

 $m - M = -5 \log(d / 10 pcs)$

HRD Zones

- Main Sequence where stars spend most of their lives; stars on the Main Seq. are undergoing core hydrogen fusion
- Giants beginning of the end for a star
- Supergiants as above, but for massive stars
- White Dwarf Branch -"dead" low-mass stars

Range of Stellar Sizes

How are spectral types useful?

Figure 12-9 Kautmaan DISCOVERING THE UNIVERSE Second Edition © 1990, W. H. Freeman and Computer 7-36

Luminosity Classes

Luminosity classes are distinguished from using measures of spectral line widths

- I = supergiant
- III = giant
- -V = main sequence

Spectroscopic Parallax

- Examples of two clusters of stars
- The points lying along straight lines make up the main seq.
- The vertical gap results from the clusters being at different **distances**.

Copyright © 2004 Pearson Education, publishing as Addison Wesley.

A Challenge for Magnitudes: Extinction

- The space between stars (the Interstellar Medium, or ISM) is not a vacuum, but filled with gas and dust.
- Extinction is "space haze" that makes objects appear dimmer than they really are
 - observed flux < true flux</p>
 - so, inferred distance > true distance

Getting Star Colors

- · Left are how color bands are defined
- Right shows how extinction becomes worse toward bluer light

Reddening

- Extinction dims starlight, but dimming by dust and gas is more severe for blue light than red
- Reddening is color-dependent extinction, resulting in an object appearing more red than it should
 - mMesses up spectral typing!
 - observed L_B/L_V < true L_B/L_V

Extinction/reddening are difficult to correct; they reduce confidence in distances derived from spectroscopic parallax

Severe Reddening

Influence of Reddening on Spectra

Stellar Census

- Most stars are on the Main Seq. Of these, most are low mass, low luminosity, red stars.
- Hot, massive stars are rare.
- HOWEVER, massive stars and giant stars are so much more luminous than red dwarfs, that they *dominate* the light output from galaxies

Binary Star Systems

EXTREMELY IMPORTANT

- Binaries consist of two stars orbiting one another because of gravity
- Can use Kepler's Laws to derive masses directly!

$$\frac{a^3}{P^2} = \frac{G(M_1 + M_2)}{4\pi^2}$$

Wide and Close Binaries

- Wide: two stars are so far apart that they hardly interact, as if each were in isolation
- Close: two stars are near enough to interact; for example, mass exchange (possibly even engulfment)

Alcor and Mizar

The Binary Sirius

Binary Types

- i. Visual double not a true binary
- ii. <u>Visual binary true binary in which</u> <u>each star can be seen</u>
- iii. Spectroscopic binary binarity as evidenced by periodic movement of spectral lines owing to the Doppler effect as stars execute their orbital motion
- iv. Eclipsing binary orientation is such that the two stars alternately pass in front of each other over one full orbit

The Binary of Castor (Gemini)

Orbit Projections

The alpha Cen Example

Binary Types

- i. Visual double not a true binary
- ii. Visual binary true binary in which each star can be seen
- iii. <u>Spectroscopic binary binarity as</u> <u>evidenced by periodic movement of</u> <u>spectral lines owing to the Doppler effect</u> <u>as stars execute their orbital motion</u>
- iv. Eclipsing binary orientation is such that the two stars alternately pass in front of each other over one full orbit

Double-Lined Spectroscopic Binaries

Single-Lined Spectroscopic Binaries

Binary Types

- i. Visual double not a true binary
- ii. Visual binary true binary in which each star can be seen
- iii. Spectroscopic binary binarity as evidenced by periodic movement of spectral lines owing to the Doppler effect as stars execute their orbital motion
- iv. <u>Eclipsing binary orientation is such</u> that the two stars alternately pass in front of each other over one full orbit

Eclipse Effects

The Eclipsing Binary Algol

The Edge-On Case

Stellar Structure

- Stars change rather slowly with time, maintaining overall nearly constant *L*, *M*, *R*, *T* over millions or even billions of years
- Can we develop models to accurately represent the interior portions of stars?

YES!

Relevant Rules of Physics

- Assume spherical symmetry and that nothing changes with time, then
 - Conserve mass
 - Conserve energy
 - Conserve momentum (F=ma): balance forces, hydrostatic equilibrium

- Energy transport (e.g., convection)
- Energy generation (e.g., fusion)
- Opacity (absorption of light)
- Composition (amount of H, He, ...)

Hey, just turn the crank!

<u>HSEQ</u>

- OK, gravity generally seeks to pull matter together, so what prevents the Earth, Moon, and Sun from collapsing under their own weight?!
- For Earth and Moon, the structure of rock can uphold itself against gravity.
- For Sun (a big ball of gas), gas pressure does the trick.

Brown Dwarfs

- Stars are by definition large gaseous bodies that undergo core H-fusion
- Only bodies with M>0.08 M_o do so
- Less massive bodies are "failed stars", or Brown Dwarfs (BDs)
- If mass low enough, it is a planet (e.g., Jupiter is *not* a BD)

Brown Dwarf Properties

Red: stars with hydrogen burning; Green: brown dwarfs with lithium and deuterium burning; Blue: planets can have some deuterium burning

Eddington Limit

- Photons "random walk" or diffuse from core to photosphere. This occurs as atoms and electrons absorb and scatter (bounce) the photons.
- Aside from energy, photons also possess momentum, and so they give an outward "kick" against gravity as they work out.
- If strong enough, sum of kicks can exceed gravity, and star cannot hold together (unstable)

$$\frac{L}{L_{\circ}} > 30,000 \, \frac{M}{M_{\odot}}$$

"Super-Eddington" if limit is exceeded

Examples of Mass Loss

Nebula M1-67 around Star WR124HST • WFPC2PRC98-38 • STScl OPO • November 5, 1998Y. Grosdidier and A. Moffat (University of Montreal) and NASA